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Abstract

Bifurcation appears in models in different fields such as biology, economics,

..etc. In this thesis we study the bifurcation in discrete-time dynamical
system in one and two dimensions, we consider the sufficient conditions for
the existence of the different types of bifurcation. We study bifurcation in
logistic competition and predator-prey models. Also we draw bifurcation
diagrams using Matlab 7.12.

11



To mum and dad .



Contents

1 Introduction

2

Preliminaries
2.1 Introduction . . . . . . . . . .
2.2 Definition of a dynamical systems . . . . . . .. .. ... ...

2.3

2.4

Stability of one dimensional maps . . . . . ... .. .. ...
2.3.1 Stability and the Cobweb diagram . . . . . . . ... ..
2.3.2  Criteria for stability . . . ... ... ... ... ...
2.3.3 Periodic points and their stability . . . . ... ... ..
Stability of two dimensional maps . . . . . .. ... .. ...
2.4.1 Stability notation . . . . .. ...
2.4.2 Stability of linear system . . . . . . ... ... ...
2.4.3 Stability analysis of nonlinear discrete systems . . . . .

2.4.4 Invariant manifolds . . . . . . . . .. ...

Bifurcation of one-dimensional maps

3.1
3.2
3.3
3.4
3.5

Introduction . . . . . ...
The saddle-node bifurcation . . . . . ... ... ... ... ..
The transcritical bifurcation . . . . . . . . ... ... .. ...
The pitchfork bifurcation . . . . . . . .. ... ... ... ...
The period-doubling bifurcation . . . ... .. ... .. ...

10
11
12



CONTENTS

4 Bifurcation of two-dimensional maps
4.1 Introduction . . . . . .. .. ...
4.2 Center manifolds . . . . .. .. .. ... ... L.
4.3 The Neimark-Sacker bifurcation . . . . . . . ... .. .. ...

4.4 The trace-determinant plane . . . . . . . . .. ... ... ...

5 Bifurcation of logistic competition model
5.1 Imtroduction . . . . . . . . ...
52 Fixed points . . . . . . ..o
5.3 Stability analysis . . . . . ... oo
5.3.1 Stability of the extinction fixed point . . . . . . . . ..
5.3.2 Stability of two exclusion fixed points . . . . . . .. ..
5.3.3 Stability of the coexistence fixed point . . . . . .. ..

5.4 Bifurcation analysis . . . . . .. ...

6 Analysis of discrete-time predator-prey system
6.1 Introduction . . . . . . . .. ... o
6.2 Stability analysis of predator-prey system . . . . . . .. .. ..
6.3  Stability analysis of predator-prey system with Allee effect . .
6.4 Bifurcation analysis . . . . . .. ... oL

6.5 Numerical examples . . . . . . ... ... L.

7 Bifurcation analysis a population model
7.1 Introduction . . . . . . ... ...
7.2 Stability analysis . . . . ... L
7.3 Bifurcation analysis . . . . ... ... 0L

7.4 Numerical examples . . . . . . . .. ... ... L.

A The Matlab 7.12 codes
A.1 The cobweb diagram of logisticmap . . . . . . . ... ... ..

vi

32
32
32
35
38

41
41
42
44
44
45
26
29

63
63
64
67
74
79

83
83
83
86
91

94



CONTENTS

A.2 The bifurcation diagram of logisticmap . . . . . . . .. .. ..
A.3 The bifurcation diagram of predator-prey model . . . . . . . .
A.4 The bifurcation diagram of model (7.1) . . . . . ... ... ..

vii



List of Figures

2.1
2.2
2.3
2.4
2.5

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1

6.1
6.2

6.3

7.1
7.2

The fixed points of f(z)=a% . . . ... ... ... ... ... 5
Stable fixed point x*. . . . . .. ... 6
Unstable fixed point 2*. . . . . .. ... ... ... ... 6
Asymptotically stable fixed point z*. . . . ... .. ... ... 6
The Cobweb diagram. . . . . . ... .. ... ... ...... 7
Saddle-node bifurcation of f(z) =2 +pu+2% ... ... ... 16
Saddle-node bifurcation of f(z) =z +pu—2*. . . . . ... .. 16
The transcritical bifurcation of f(z) =z +px —2* .. . . . .. 19
Supercritical pitchfork bifurcation. . . . . .. ... ... ... 22
Subcritical pitchfork bifurcation.. . . . . . . . ... ... ... 23
The Cobweb diagram of logisticmap . . . . .. ... .. ... 30
The bifurcation diagram of logisticmap . . . . . .. .. ... 31
The cobweb diagram of the map r—r—73 . . . . . . . . .. 38
The bifurcation diagram of predator-prey ( model (6.1)). . . . 80
The bifurcation diagram (1) of predator-prey with Allee effect

(model (6.5)). . . . . . . .. 81
The bifurcation diagram (1) of predator-prey with Allee effect

(model (6.5)). . . . . . . 82
The bifurcation diagram of model (7.1), when ¢ =0. . . . .. 92
The bifurcation diagram of model (7.1), when ¢=0.3. . ... 93

viil



Chapter 1

Introduction

In many scientific fields researchers need to study difference or differential
equations that contain parameters, so it is important to study the behavior
of these equations as the value of parameter varies. This study focuses on
the concept of bifurcation . In this thesis we mainly consider bifurcation in
discrete dynamical systems (difference equations) in one and two dimensions.
Bifurcation is classified according to the change of stability of the fixed point.
We investigate these types and give their sufficient conditions.

The main goal of this thesis is to study the bifurcation in some population
models. We study the competition model in which two species compete for
some limited food source or in some way inhibits each others growth. The
most well-known competition model has been studied by Lotka and Volterra
in which two species N; and N, having logistic growth in the absence of the
other. In our study we consider the model

ax, (1 —x,)

Tpy1 = 1+ Un
(1.1)
il 1+ dz,

where a,b > 0, and ¢,d € (0,1). The parameters a and b are known as
intrinsic growth rates of species x and y, the parameters ¢ and d are known
as the competition parameters of x and y.

This model was studied by Guzowska, Luis and Elaydi (2011) [2]. We find
that this model has three kinds of fixed points: extinction, exclusion and
coexistence fixed point. We study the stability of these fixed points, and also
compute the invariant center manifold, which play a center role in studying
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stability and bifurcation.

Also we study the predator-prey model, in which the growth rate of one
population is decreased and the other is increased. The predator-prey model
is given by

Nt+1 = Nt + TNt(]_ — Nt) — a,NtPt

1.2
( ) Pt+1:Pt+aPt(Nt—Pt)

Where N; and P; denote prey and predator densities respectively, while r
and a are positive constants. This model was introduced recently by Canan
Celik and Oktay Duman, [1]. We discuss the stability of the fixed points and
investigate the parametric space where the bifurcation happens. Furthermore
we consider the predator-prey model with Allee effect.

Allee effect is phenomenon that took a large consideration from ecologists. It
describes a positive interaction among individuals at low population sizes and
this interaction may be critical for survival and reproduction [11]. Celik and
Duman studied predator-prey system with Allee effect on prey population:

Ny
p+ Ny

Nip1 = Ne+rNy(1 — Ny) — alN. P,
(1.3)

Piyy = P+ aPy(N; - P)

Where the Mf}vt is taken as Allee effect and p is Allee constant. Results
concerning stability and bifurcation for this model were clarified. We depend
in our analysis on trace-determinate plane and Jury test.

Finally, we make a generalization of Beverton-Holt model and consider dis-

crete dynamical population model which is used to model a single species:

ax, (1 —x,)

(14 Flaa) =

where z,, € [0, 1], and ¢ € (0,1), a > 1.
Moreover we use matlab program to plot bifurcation diagrams and the region
of attraction of the previous models.



Chapter 2

Preliminaries

2.1 Introduction

In this chapter we summarize briefly the basic concepts and theories in one
and two dimensional discrete dynamical systems, which enables us to un-
derstand the subsequent chapters in this thesis. Most of definitions and
theorems are taken directly from [7], [12], and [4]. The interested reader can
see the details in these references or other books on dynamical systems. First,
we define the dynamical system. Then we introduce the notations of fixed
points, hyperbolic and non- hyperbolic fixed points, also we investigate the
stability criteria of fixed points of one and two dimensional maps of discrete
dynamical systems.

2.2 Definition of a dynamical systems

Dynamical systems occupied considerable attention in many areas such as
economics, social sciences, physics, engineering, ..., etc, since it can predict
the future state of the system if the present state and the laws governing its
evolution is known, hence the concept of dynamical system includes:

1. State space: the set of all states of the system which is characterized
by a point of the set X.

2. Time

3. FEvolution operator: the evolution law that determines the state x; of
the system at time ¢, provided the initial state xq is known.

3



CHAPTER 2. PRELIMINARIES 4

Now we are able to give a formal definition of dynamical system:

Definition 1. /4, p.7]

A dynamical system is a triple {T, X, @'}, where T is a time set, X is a state
space, and ©' : X — X is a family of evolution operators parametrized by
tefl.

Time in dynamical systems may be continuous, in which the law of evolution
is defined by a differential equation, such as

dx

- — €T

@)

Where X is the state space, and f: X — X.

Or the time may be discrete in such case the law of evolution takes the form
of a map or (difference equation):

Tpy1 = f(xn)

This equation gives us information about how the variable z, changes as
time changes from n to n + 1.

In this thesis we consider discrete dynamical systems of one and two dimen-
sional maps, i.e the state space is in R, or in R2.

2.3 Stability of one dimensional maps

In this section we present the main feature of one dimensional maps in dis-
crete dynamical systems. In order to have a clear look of a dynamical system
we must clarify some concepts.

Definition 2. [7, p.2] Consider a map f : R — R, then the orbit O(xg) of
a point o € R is defined to be the set of points

O(x0) = {0, f(0), fQ(xO), fg(l'o)a .

Thus the orbit is a subset of state space X. If the evolution operator maps
a point into itself, thus the orbit consists only of one point such a point is
called "fixed”, or "equilibrium” point.
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Definition 3. [7, p.15] A point x* € X is said to be a fixed point ”equilib-

rium”, if f(x*) = x*.

In other words, at the fixed point the state of the system dose not change
in time. Moreover, to find the fixed points of a system, we must solve the
equation f(zr) = x. For example, the fixed points of f(z) = z* are the
solutions of the equation 23 — x = 0. Hence there are three fixed points
—1,0,1 for this map. In other words, a fixed point of a map f is a point
where the line y = z intersects the curve of y = f(x), as in figure 2.1.

Figure 2.1: The fixed points of f(z) = 2°.

2.3.1 Stability and the Cobweb diagram

The main objective in dynamical systems is to study the behavior of orbits
near fixed points. To investigate the behavior of a system near a fixed point,
we define stability and unstability of fixed points as follows :

Definition 4. [7, p.19] Let f : X — X be a map and z* be a fized point of
f, where X is an interval in R.

1. The fized point x* is said to be stable if for any e > 0 there exists 6 > 0
such that for all xy € X with |xg—x*| < § we have | f™(xo) —x*| < € for
alln € Z* (see figure 2.2). Otherwise the fived point x* will be called

unstable(see figure 2.3).
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2. The fixed point x* is said to be attracting if there exists n > 0 such that
|zo — x*| < n implies that lim,, . f"(zo) = x*.

3. The fixed point x* is asymptotically stable if it is both stable and at-
tracting (see figure 2.4).

X'+

X*+3 A ;_’\
NS\ L
Vi

l = = = = = ® = = N u
0 1 2 3 4 5 6 7 8 9 10 n

Figure 2.2: Stable fixed point z*.

|l = B 8 = = ® = ® ®m 8= m,
01 2 3 4 5 6 7 8 9 10

Figure 2.3: Unstable fixed point z*.

1 2 3 4 5 6 7 8 8 10 n

Figure 2.4: Asymptotically stable fixed point x*.
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Cobweb diagram:

Cobweb diagram allows us to iterate the function graphically, so we can
determine the stability of the fixed point.

Draw the curve y = f(z) and the line y = x in the xy- plane, we start on the
z-axis at initial point zg, it is mapped to a new point x; which we find by
drawing a vertical line from ¢ to the curve f(x), to determine z; on z-axis,
we move horizontally to the curve y = x, the z-coordinate will be z; to find
the next point on the orbit x5 by once again drawing a vertical line to the
curve y = f(z). Continuing this process will give us the point in the orbit of
xo (see figure 2.5).

0 L L L L L L L L
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1
X

Figure 2.5: The Cobweb diagram.
The fixed point z* = 0.5 is asyptotically stable, while z* = 0 is unstable.

2.3.2 Criteria for stability

Fixed points are divided into two types: hyperbolic and non hyperbolic.

Definition 5. Let x* be a fized point for the system

(2.1) Tp1 = f(25)

this fized point is said to be hyperbolic if |f'(xz*)| # 1. Otherwise it is non
hyperbolic.

Now we will summarize the stability criteria for hyperbolic and non hyper-
bolic fixed points.
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Theorem 2.3.1. [7, p.25] Let x* be a hyperbolic fized point of system(2.1),
then the following statements hold:

1 If | f'(xz%)] < 1, then x* is asymptotically stable.
2. If |f'(z*)| > 1, then x* is unstable.

Theorem 2.3.2. [7, p.28] Let x* be a fixed point of the system (2.1) such
that f'(z*) = 1, then the following statements hold:

1. If f"(x*) # 0, then x* is unstable.

2. If f"(z*) =0 and f"(z*) > 0, then x* is unstable.

3. If f"(z*) =0 and f"(z*) < 0, then x* is asymptotically stable.
Before we establish the stability criteria for non hyperbolic fixed points when
f'(x*) = —1, we need to introduce the definition of Schwarzian derivative.
Definition 6. [7, p.30] The Schwarzian derivative (Sf) of a function f is

defined by
_ =) 3 {f”(x)r

S =Ty 2 | )

If f'(z*) = —1, then

Theorem 2.3.3. [7, p.31] Let x* be a fized point of a map f such that
f'(x*) = —1, then the following statements hold:

1. If Sf(z*) < 0 then, x* is asymptotically stable.

2. If Sf(x*) > 0 then, x* is unstable.

2.3.3 Periodic points and their stability

Another type of orbits is a periodic orbit, in which any point return to itself
after a certain period of time.

Definition 7. [7, p.36] T is said to be a periodic point of f with period k if
f¥(x) = & for some positive integer k.
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The orbit of k-periodic point is
O(z) = {z, f(2), f*(@),..., ()}

Now we will introduce the stability criteria of k-periodic points, note that
the k-periodic point 7 is a fixed point for the map f*, hence the study of the
stability of k-periodic points of f, reduces to studying the stability of fixed
points of f*. Thus the following theorem holds:

Theorem 2.3.4. [7, 37| Let T be a k- periodic point of f, then:

1. = is asymptotically stable if
[f (@) (f(@2) . f (7 @) < 1

2. % 1is unstable if

2.4  Stability of two dimensional maps

2.4.1 Stability notation

Consider the discrete dynamical system

(2.2) X1 = f(Xy), X € R?

Note that X* = (ii) is a fixed point of f if f(X*) = X*.
2
Now we will give the required stability definitions of the fixed point X* of

(2.2).
Theorem 2.4.1. [7, p.195]

1. X* is stable if given € > 0 there exist § > 0 such that | X — X*| < 6
then, |f*(X) — X*| < € for alln € Z*, otherwise it is unstable.

2. X* ia attracting if there exist v > 0 such that | X — X*| < v then,
lim o0 f7(X) = X"

3. X* is asymptotically stable if it is both stable and attracting.
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2.4.2 Stability of linear system

A linear two dimensional system can be written as

(2.3) Xo1 = AX,

Where A is 2 x 2 matrix. Hence the orbit of X is given by
{X,AX,A’X, ... A"X, ...}

By iteration, we may conclude that X,, = A" X is the solution of equation

(2.3), where X, = (2583)

Obviously, the point (0,0) is a fixed point of the linear system (2.3). Now

our main objective is to investigate the stability of the origin. The following
theorem gives us complete information about the stability of the fixed point

X* = (8) For the matrix A the spectral radius p(A) is defined by

p(A) :=max{|A| : A is eigenvalue of A}

Theorem 2.4.2. [7, p.198] Consider the linear system (2.3) then the fol-
lowing statements hold:

1. If p(A) < 1, then the origin is asymptotically stable.
2. If p(A) > 1, then the origin is unstable.
3. If p(A) =1, then the origin is unstable if the Jordan form of A is

()

(i.e A has a single eigenvalue X\ with a single eigenvector. )
Otherwise the origin is stable.

Now we will introduce another way to investigate the stability of (0,0) in
linear system (2.3), namely trace-determinate plane. Recall that for matrix
A= ail a2

Qg1 A2
Theorem 2.4.3. [7, p.203] let A be a 2 X 2 matriz, then the origin is
asymptotically stable if and only if

s trA= a1 + asy, and detA = 1129 — A120921 .

[trA| — 1 < detA < 1.
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2.4.3 Stability analysis of nonlinear discrete systems

Consider the nonlinear discrete system
(2.4) Xop1 = f(Xn), XeR’ feC(R,R%,r>5

The stability property of nonlinear system can be identified through the
dynamical properties associated with linearized system. Suppose X* is a
fixed point of system (2.4), such that f(X*) = X*. Take the Taylor expansion
of f around X*, hence

(2.5) F(Xa) = f(X7) + DA(XT) (X — X7) + 0| X, — X7

Now we make the change of variables U,, = X,, — X*, hence equation (2.5)
becomes

(2.6) fUn 4+ X*) = X* = Df(X*)U, + o(|Un|?)
Let g(U,) = f(U, + X*) — X* and Df(X*) = J in equation (2.6) we get
(2.7) 9(Un) = JUy + o(|Un[*)

Note that g(0) = f(X*) — X* = 0, hence 0 is a fixed point of ¢ if and
only if X* is a fixed point of f. Also ¢"(U,) — 0 if and only if f"(X,) =
f™(U, + X*)— X*. Hence, 0 is asymptotically stable under ¢ if and only if
X* is asymptotically stable under f.

Notice that o(|U,|?) is very small and can be neglected, hence we can ap-
proximate the nonlinear system (2.4) by the linear system

g((]ﬁ) ::<][]n

Where %(X*) %(X*)
ox1 Oxo
7=pfex) = | 8
L(xn) SE(x)

Theorem 2.4.4. [12, p.15] Let X* be a fized point of the system
X = f(Xn), X, €R?

Where f is differentiable function, let J be a Jacobian matriz of the above
system, such that
Gr(XT) gR(X)
J = Df(X") =
GE(XT) FE(X7)

with eigenvalues \y and Ao, then :



CHAPTER 2. PRELIMINARIES 12

1. X* 1s asymptotically stable if all of the eigenvalues of J have modulus
strictly less than one.

2. X* is unstable if J has some eigenvalues with modulus greater than
one.

Definition 8. A fized point X* is hyperbolic if none of the eigenvalues of
J = Df(X*) have modulus equal to one.

2.4.4 Invariant manifolds

Now we will present the definition of invariant manifolds in linear and non-
linear systems, and how their dynamics determine the dynamics of the orbits
near the fixed point.

Definition 9. [12, p.28] Let S C R™ be a set, then S is said to be invariant
under the map X — f(X), if for any Xy € S then f"(Xo) € S for all n.

Consider the linear dynamical system
X1 = AX,, X eR"

Let E*, E* and E° be the (generalized) real eigenspace of A associated with
eigenvalues of A, such that

E® = span{ey, ..., es}
E* = span{esi1, ..., €sru}

c
E° = Span{es+u+17 s 7€s+u+c}

where ey, ..., es are the (generalized) eigenvectors of A corresponding to the
eigenvalues of A having modulus less than one, and ez, q,..., €5, are the
(generalized) eigenvectors of A corresponding to the eigenvalues of A having
modulus greater than one, and ey, 41, ..., €s1urc are the (generalized) eigen-
vectors of A corresponding to the eigenvalues of A having modulus equal to
one. Each of these spaces is invariant and represents stable, unstable and
center spaces, respectively. Moreover, the orbits starting in E® approach the
origin as n — 400, orbits starting in E* approach the origin as n — —oo.
We want to generalize these notions to the case of nonlinear system, thus the
invariant manifold will correspond to nonlinear eigenspaces.

Definition 10. A subset S C R" is called as a k-manifold if it can be repre-
sented as the graph of a smooth function defined on the k-dimensional sub-
space of R™.
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In nonlinear systems, any fixed point has an invariant manifold correspond-
ing to eigenspaces associated with linearized system. There will be three
invariant manifolds, namely, stable manifolds (W} _.(X*)), unstable mani-
folds (W.(X™*)) and center manifolds (W .(X*)). They are tangent to the
associated linear eigenspaces at the fixed point X*. We define the above
invariant manifolds as follows :

Wi (X*) = {X € R": f"(X) = X" asn — oc}
W (X*) = {X € R" : f*(X) - X" asn — —oc}

Center manifold will be studied in chapter four.



Chapter 3

Bifurcation of one-dimensional
maps

3.1 Introduction

Consider the discrete-time dynamical system

(3.1) x— f(x,pn), reR, peR!

Let (&, 1) be a hyperbolic fixed point, then a small change in the parameter
i1, keeps the type of fixed points and its stability unchanged. Now if the
point (Z, 1) is non-hyperbolic fixed point, in this case, for u very close to [
new dynamics can be created, for example a new fixed point or new periodic
orbit will appear. It seems that a qualitative change occurs when the system
passes through a non-hyperbolic fixed point.

A change in the parameter causes a qualitative change in the dynamical sys-
tem, and nature of its fixed points. This process is called bifurcation. This
sudden change may happen in the number or nature of the fixed and periodic
points, fixed points may appear or disappear, change their stability or even
break a part into periodic points.

We will characterize and analyse the types of bifurcation of one-dimensional
maps, in discrete-dynamical systems.

14
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3.2 The saddle-node bifurcation

Saddle-node bifurcation is associated with a non hyperbolic fixed point (, /1),
namely, %(jz, ft) = 1, in which two fixed points collide and annihilate each
other, one of the fixed points is unstable, while the other is stable.

Remark 3.2.1. [/, p.114] This bifurcation has several names, as fold (or
tangent bifurcation), turning point.

Example 3.2.2. Consider the map
(3.2) fle,p)=p+ae+2®,  zeR, peR

It is clear that the point (0,0) is non hyperbolic fixed point i.e

£(0,0)=0
(3.3) g_j:(o,o) .

For p # 0 the fixed points of the map are found by solving the equation

fla,p) —z=p+a>=0

for < 0, there are two different branches of fixed points * = +/—pu, for
i > 0 the system has no fixed points. Now, we would like to check the
behavior of the system near the point (0,0). Observe that f/(z) = 1 + 2.
Thus |f,(=v—p)] = |1 = 2y/=p| < 1if and only if -1 <1 —2y/—p < 1.
Solving the latter inequality for p, so —2 < —2y/—p < 0, we obtain —1 < p <
0. This implies that the branch = —/—p is asymptotically stable when
—1 < p < 0. Furthermore, |f}(v/=p)| = [1 +2y/=pu| > 1, and hence the
branch /—p is unstable for all 1 < 0. Thus when the value of the parameter
varies from negative to positive, the two branches (stable, unstable) collide
at p = 0 then disappear, this causes the saddle-node bifurcation.
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- -
-
-

Figure 3.1: Saddle-node bifurcation of f(z) =z + p + 2%

The stable branch —/—p, and unstable branch /—px collide at the origin, this
causes the saddle-node bifurcation.

Remark 3.2.3. We treat the map

Fla, ) = p+x—a?

in the same way as the previous one, but the two branches x = 4,/ appear
when p > 0. And |f'(y/1)] = |1 —2\/p| < 1, if and only if 0 < p < 1, while
|f'(=y/1)] = [1 +2y/i| > 1. Hence in contrast, to the map(3.2), the upper
branch is stable, and the lower is unstable as shown in the following fiqure:

Se
S~
-

Figure 3.2: Saddle-node bifurcation of f(z) =z + pu — 2% .
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Theorem 3.2.4. (The Saddle-node Bifurcation). [7, P.80]
Suppose that f,(zr) = f(z,pn) is a C* one- pammeter family of one dimen-
sional maps, and T is a fived point of f;, with 2L (93 f) = 1. Assume further
that

of

o

Then there exists an interval I around & and a C' map p = p(x), where
p: I — R such that p(z) = f1, and f(z,p(x)) = x. Moreover, if AB > 0,
the fized point exists for p < fi, and, if AB < 0, the fized point exists for
> [

0

A=L@p£0  and S (@A) #0

Before we prove the previous theorem, we state the implicit function theorem
which we need in our proof.

Theorem 3.2.5. (The Implicit Function Theorem) [7, p.86]

Suppose that G : RxR — R is a C' map in both variables such that for some
(Z,1) € RxR,G(z,1) = 0 and %(fc,ﬂ) # 0. Then, there exists an open
interval J around fi, an open interval I around %, and a C* map p = p(Z),
where p . [ — J such that

1. p(2) = ju.
2. G(z,p(x)) =0, forallx € I.
Proof. of theorem 3.2.4:

Let G(z, ) = f(x, pu) — . It is clear that the map G satisfies the conditions
of the implicit theorem, because

Then there exists an open interval I around Z and a C' map pu = p(z) on [
such that G(z,p(x)) = 0. This implies that

(3.4) [z, p(z) =2

Now differentiating equation (3.4) with respect to x, we have
Of 1o\ ey L OF o o
2 (@, 0P (&) + 5-(3,0) =1
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By using the hypothesis of the theorem we have p/(z) = 0, hence % is a
critical point for p(z). Now take the second derivative of (3.4) with respect
to x, so we have

P i+ L) @) + 2.2 @ @) + e @) = 0
gz (02 55 (0. ) (' (2 S0 T P (@) + 50 (@ p(2) =

(3.5) p(@) = -5t =

So if AB > 0 then p”(z) < 0 hence the curve of p(z) is concave downward
at x = 2 and the fixed points exist for p < i, the situation is reversed when
AB < 0. [7, p.87] O

The above theorem specifies the conditions of the saddle-node bifurcation.
In summery, a saddle-node bifurcation happens at (z, 1) if the following
conditions occur

(a) f(2,0) =12

(c) 2—,{@,@ #0
(d) Zh(E ) #0

We will now discuss another type of bifurcation that appears when

L@, =1

3.3 The transcritical bifurcation

A transcritical bifurcation is a kind of local bifurcation of dynamical systems,
where a fixed point interchanges its stability with another fixed point as the
parameter is varied.

Example 3.3.1. Consider the map

(3.6) fle,p) =2 +pr—2°,  zeR, peR
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Notice that the equation (3.6) has two fixed points, ; = 0 and Ty = p. It is
clear that (0,0) is non hyperbolic fixed point for equation (3.6), since

f(0,0) =0
of
52(0,0) = 1

The curves of two fixed points passing through the bifurcation point ” (&, i) =
(0,0)”. We can determine the region of stability for each curve. Observe
that f'(z,u) = 14+ p — 2z, and also |f'(21)] = |1 + pu| < 1, if and only
if —2 < pu < 0. Hence the branch z = 0 is asymptotically stable when
—2 < g1 < 0. Moreover, |f'(Z2)] = |1 — u| < 1, this implies that the branch
x = u is asymptotically stable when 0 < p < 2. Hence, it is clear that
the two curves intersect at the bifurcation point (0,0) where the stability of
these two curves is exchanged (i.e the curve x = 0 when it crosses the point
(0,0) goes from stable to unstable situation, while the other curve goes from
unstable to stable situation). As the following figure shows:

X

Figure 3.3: The transcritical bifurcation of f(z) =z + uxr — 2* .
An exchange of stability happen at the origin, between the branch x = 0 and

T = .
We want to find conditions which cause transcritical bifurcation at (Z, 1).
Theorem 3.3.2. [12, p.507]

Consider the map

(3.7) x— f(x, ), reR, peR!
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where f is C", (r > 2) and having a non hyperbolic fized point at (0,0) i.e.

£(0,0)=0
of B
8_95(0’0) =1
and
af B
@(0,0) =0
0% f
(3.8) 8x0u<0’0) #0
o*f
@(070) # 0

then f undergoes a transcritical bifurcation at (0,0).

Proof. The fixed point of (3.7) is given by

(3.9) ha.p) = flz,p) —x=0

and let
h(z, p) = xH(x, p) = x(F(x, 1) — 1)

where

h(z,p) T ?é 0
3.10 H(x,pn) = z 7
hence,

f(xvu) T ;é 0
(3.11) Flz,p) =< ,°

go,p), z==0

Note that the curve x = 0 is a curve of fixed point. It is clear that

H(O,O):F(O,O)—1:%(0,0)—1:0
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and

oH oF 92

thus by the implicit function theorem there exists u(x) such that
(3.12) H(z, p(x)) = Fla, p(x)) — 1= 0
Now differentiate (3.12) with respect to x so we have

aH _OF OFdy_
de — Or Oudr
thus

0 9
dit ) - ~3:(0:0) _ —55£(0.0)

= £ 0
dz 50,00 2L0,0)

We can notice that p(z) is a curve of fixed points for the system, since

F(z,p(z))—1=0

fn) |
hence
[z, p(z) =

And since 2£(0) # 0, this implies that u(z) does not coincide with z = 0 and
exists on both sides of = 0.
[l

3.4 The pitchfork bifurcation

Example 3.4.1. Consider the map
(3.13) flz, p) =2+ px — 2°, reRY peR!
it is clear that

f£(0,0) =0

of
22(0,0) =1
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so the point (0,0) is non hyperbolic fixed point for the map (3.13). The
equation of fixed points is given by

there are two curves of fixed points
x=0

and
p=a’

the curve x = 0, is stable when —2 < ;i < 0, while the curve 2% = y is stable
when 0 < p < 1, these branches exist at the right side of u = 0. In this case
we have supercritical pitchfork bifurcation (see figure 3.4). Another case is
subcritical bifurcation (see figure 3.5) where the normal form is

fla, ) =« + px + 2°

in this case x = 0 is stable for —2 < 1 < 0, and also there are two unstable
fixed points x = ++/—p when p < 0.

X

Figure 3.4: Supercritical pitchfork bifurcation.
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-
-

-
-
-

Figure 3.5: Subcritical pitchfork bifurcation.

To illustrate the conditions that cause this bifurcation, we have to work as
the previous bifurcation.

Theorem 3.4.2. [12, p.510] Consider a map
(3.15) x— f(x,pn), reR, peRY, feC (r>3)
with a non hyperbolic fized point (0,0) i.e.

f£(0,0) =0

(3.16) o
22(0,0) = 1

and

of B
@(0,0) =0

82

gir0.01=¢
(3.17)

83

0 0.0 #0

0% f
oxou
then f undergoes a pitchfork bifurcation at (0,0)

(0,0) # 0
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Proof. The fixed points of (3.15) are given by

[ p) —x = h(z,pn) =0

and let
where

h(z,p) T 7é 0
3.18 H(x, u) = x
) o {%(o,m, =0
hence

f(z,p) x 7& 0
3.19 F(x,n) = x
1 ) {%(o,m, =0
it is clear that

H(0,0) =0

and oH OF 92 f

thus by the implicit function theorem there exists u(x) such that
(3.20) H(z, p(x)) = F(z, p(x)) =1 =0
Now differentiate (3.20) with respect to z at (0,0), and we have

dH OF OF  du
(3.21) %(0, 0) = %(0, 0) + a—u(O, 0)%(0) =0

thus

0 9
dit ) = ~3:(0:0) _ —55£(0.0)

(3.22) = & =
dx 5:(0,0) 2L (0,0)

thus the point (0,0) is a critical point of the curve pu(x).
Differentiate (3.21) with respect to x. This yields

PF  PpdF _0*F du  0°F [(dp\”
) il ) =

Ox? * dx? Ou + Opdx dx * ou? (daz‘) 0
but %(0) = 0, so

0?F d*n . OF
W(()?O) + @(0)8—“(0,0) =0

24
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thus , 55
Py = Zar (0.0 ~5:5(0,0) L
da? 88(0,0) %(0, 0)

this means that p(z) exists at the right side of p = 0 if

and at the left side of = 0 otherwise. It is obvious that x = 0 is a curve of
fixed points of f. This shows the characteristics of the curves of fixed points
associated with pitchfork bifurcation. O

3.5 The period-doubling bifurcation

Now we will ask the following question” what is the type of bifurcation that
happens at the non hyperbolic fixed point (Z, 1), with %(:&, ft) = —177 This
will be answered after studying this example.

Example 3.5.1. [12, p.513-515] Consider the one - dimensional map
(3.23) fz, p) = —2 — px + 22, reRY peR!

it is clear that (0,0) is a non hyperbolic fixed point and satisfy

f(0,0) =0
(3.24) of

= =-1

2(0,0)
The fixed points of (3.23), are the solutions of the equation
(3.25) fle,p) =z =0

thus the map (3.23) has two curves of fixed points
x=0
and
2=+ 2

We will now check the stability of two curves. The curve x = 0 is stable
when —2 < u < 0, and unstable anywhere else, while the curve z2 = j + 2,
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is unstable when p > —2, and does not exist when p < —2. We also see that
only z = 0 passes through the bifurcation point (0,0), and nor conditions of
previous bifurcation is satisfied.

We take the second iteration of (3.23), so :

(3.26) fa,p) = 2+ p2+ p)z — 22° + O(x?)
and it is easy to show that

fz(oa O) =0
8 2
8_];(0’0) =1
8 2
%(0,0) 0
(3.27) 9 f2
Ox?
83 2
0.0 #0

a2f2

(0,0)=0

thus the second iteration of f undergoes a pitchfork bifurcation at a non
hyperbolic fixed point (0,0). And since the fixed points of f?(z, ) are not
the fixed points for f(z,u), they must be period two points of f(x, ). We
say that f(x, ) undergoes a period-doubling bifurcation at (0,0).

We now seek the conditions for the map (3.23) to undergoes a period-doubling
bifurcation.

Theorem 3.5.2. [7, p87-88] Suppose that

(a) fu(2) =2, for all p in an interval around fi.
(b) fy(@) = -1

(c) &L (3,1) #0

Then there is an interval I about & and a function p : I — R such that
fo) (x) # x, but fz(x) =z
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Proof. Let
Glap) ife # 1
Bz, p) = g& D e
oo (T, 1 ifx =2x
where

It is clear that

N _8G
B(%M)- ax(x7 )
L Of e
and
0B, 0*G .
2 12
-
oxou
#0

Hence by the implicit function theorem there exists a C* map p(x) defined
on an interval I about Z, such that B(xz, p(z)) = 0. Thus C&2) — ¢ 4 £ 3.

r—x

Consequently, f*(z,p(z)) = z, O

Example 3.5.3 (Logistic map). [7, p.43-47] Consider the one-dimensional
map

(3.28) Tpp1 = prn(l —xy)

Where z € [0,1] and u € (0,4]. The fixed points of (3.28) are the solutions
of the equation

(3.29) f@,p) =p2(l—2)=12

So we have two fixed points which are
#71=0 and  Ip="——

Now we will illustrate the dynamical behavior of system (3.28) while param-
eter is varied on the interval (0, 4].
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O<pu<l
In this interval equation (3.28) has a unique fixed point which is Z; = 0,
because I is negative. Also #; is asymptotically stable (see figure 3.6a
) since f;(v) = p — 2ux and |f,(0)] <1

p=1
1 = I = 0, and %(0,1) = 1 it follows that the point (0,1) is non
hyperbolic point. Equation (3.28) undergoes at (0,1) a transcritical
bifurcation since

f(0,1) =0
%(0,1) =1
(3.30) g—i(o, 1)=0
20 #0
Also, f"(0,1) = —2 # 0, and by applying theorem 2.3.2, we may

conclude that 0 is unstable. This is true if we consider negative as
well as positive initial points in the neighborhood of 0. Since negative
initial points are not in the domain of system (3.28), we discard them
and consider only the positive initial points. Figure 3.6b tell us that
the fixed point is semi-asymptotically stable frome the right, hence the
fixed point #; = 0 is asymptotically stable in the domain [0, 1].

l<pu<3
The fixed point 2y = /%1 is asymptotically stable (see figure 3.6¢ )
because

|f.(22)] = [2 — p| < 1, while 2, is unstable.

w=3
We have fi(2q) = fé(%) = —1, thus the fixed point, % is non-hyperbolic,
and it is asymptotically stable ( see figure 3.6d ) because the Schwarzian
derivative (Sf3(%)) < 0. If we check conditions (3.27) at the point
(x, 1) = (%, 3) we conclude that the logistic map undergoes a period-
doubling bifurcation at this point (see figure 3.7).

w>3
The fixed point Z3 is unstable (see figure 3.6e), and 2-periodic cycle
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will appear. To find the 2-periodic cycle we must solve the equation
fi(x) =z or

prr(l—z)1—pz(l —2)] —2=0
Discarding the fixed points 0 and “T_l, we get the 2-periodic cycle
{Zfl, 1_]2} where

(1+p) — /(u—3)(p+1)
24
(T+m)++/(p—3)(p+1)
24

r1 =

This 2-periodic cycle is asymptotically stable when |f}(Z1) f,(Z2)] < 1
or

—1 < (1 —27)(1 —27,) < 1
substituting the value of z; and T leads to the follwing inequality
1< —p*+2u+4<1

solving the above inequality yields that the 2-periodic cycle is asymp-
totically stable when

3<p<1+V6

w=1+ \/6
We have f,(71)f,(72) = —1, also Sf7(Z1) < 0and Sf3(Z;) < 0, thus
the periodic cycle is asymptotically stable, and it is unstable when
p > 1+ /6. Since the 2-periodic cycle looses its stability, 4-periodic
cycle will appear. It follows that the map fi(m) undergoes a period-

doubling bifurcation when p =1+ V6.

This process of double bifurcation continues indefinitely and produces a se-
quence {p, }°2;, and the ratio % approaches a constant called Fiegen-

baum number, § where

(3.31) § = lim K Hr o 4669201609 . ..

n=0 lpi41 — Hn

By using formula (3.31) we have

M — Hn—1
Mn+1:Mn+Tn
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(a) 0 < p < 1, the fixed point (b) =1, the fixed point z* = 0
z* = 0 is asymptotically stable is asymptotically stable

(¢) 1 < p < 3, 0 is unstable, and
x5 is asymptotically stable

. o
Ji -
. o7 //
gos oo P
o S
0.4] s
o

] [— [ |
01 02 03 04 05 08 07 08 08 1
X

(d) g = 3, and =} is asymptoti- X
cally stable, and two periodic cy- (e) u > 3, and z} is unstable.
cle appears.

Figure 3.6: The Cobweb diagram of logistic map
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0.9
08r
07r

06F

041
03r
021

01r

Figure 3.7: The bifurcation diagram of logistic map
An exchange of stability occures at i = 1 between z7 = 0 and
x5 = “=L (transcritical bifurcation). Also when p = 3 period doubling bifurcation

o
occures.



Chapter 4

Bifurcation of two-dimensional
maps

4.1 Introduction

Consider the map
(4.1) x— f(x,pn), reR? peR', feC ,r>5.

There are three different cases to consider for the non hyperbolic fixed point
(z, 1) of (4.1). We will now illustrate these different cases, and the type of
bifurcation associated with each case. Let J be the Jacobian matrix (J =

Dfo(Z, ft)).

1. J has one real eigenvalue equals to 1, and the other eigenvalue is off,
or in the unit circle.

2. J has one real eigenvalue equals to —1, and the other eigenvalue is off,
or in the unit circle.

3. J has two complex conjugate eigenvalues with modulus equal 1. [7,
p242]

4.2 Center manifolds

Here we will study bifurcation of system (4.1). In this case, the center man-
ifold theorem is used to reduce the system (4.1) to one dimensional map f,,,

32
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defined on the center manifold.
Consider the linear system

X — AX X eR"

Where A is n x n matrix. We mentioned before that each system has in-
variant subspaces E°, E* and E¢. Note that the orbits starting in E* decay
to zero as n — 00, orbits starting in E* become unbounded as n — oo and
orbits starting in E¢ neither grow nor decay as n — oo. If we suppose that
E“ = () then we find that any orbit will rapidly decay to E¢. Thus if we are
interested in long-time behavior we need only to investigate the system re-
stricted to E¢. Similar type of reduction can be applied to study the stability
of non-hyperbolic fixed points of nonlinear maps. There will be an invariant
center manifold passing through the fixed point to which the system could be
restricted in order to study the behavior of the system in the neighborhood
of the fixed point. [12, p.245]

We state the center manifold theorem without proving it.

Theorem 4.2.1. [12, p258]
Consider the following system

Tp1 = Az, + f(xm yn)

4.2
( ) Yn+1 = Byn + g(mn: yn)
where

f£(0,0)=0 Df(0,0)=0
(43) g(0,0) =0 Dg(0,0) =0

Suppose that the system has (0,0) as a fized point, and A is ¢ X ¢ matriz
with eigenvalues of modulus one, and B is s X s matriz with eigenvalues of
modulus less than one. There ezist a C" center manifold for the system (4.2),
which can be locally represented as a graph as follows

(4.4)  We={(z,y) € R° x R|y = h(z),|z| < 8, h(0) = 0, Dh(0) = 0}

for & sufficiently small. Moreover, the dynamics of (4.2) restricted to the
center manifold is, for x sufficiently small, given by the c-dimensional map

(4.5) r— Az + f(z,h(x)),x € R".

Notice that h(0) = 0 and Dh(0) = 0 imply that 1W¢(0) is tangent to E¢ at
(0,0). The dynamics of equation (4.5) determine the dynamics of the system
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(4.2). If the point (Z,7) is the fixed point for the system (4.2), such that
(#,79) # (0,0), then we make a change of variables in system (4.2), so we can
shift the point (z,9) to (0,0).

In studying the bifurcation of two dimensional maps, we have the following
cases

(a) If J has real eigenvalue equal to 1, then one of three different kinds of
bifurcations can happen (saddle-node, transcritical, or pitchfork bifurca-
tion).

(b) If J has an eigenvalue equal to -1, then we have a period-doubling bifur-
cation.

(c) If J has a pair of conjugate complex eigenvalues with modulus equal to
one, we have a Neimark- Sacker bifurcation. [7, p.249]

Remark 4.2.2. [7, p.242] In the first two cases we apply the center manifold
theorem to reduce to one-dimensional map. While Neimark-Sacker bifurca-
tion has no analogue in one dimension. To distinguish any kind will happen
we must check the conditions which had been studied in one dimension to
the map fu-

Remark 4.2.3. [7, p.243] To find the curve y = h(z), we substitute y = h(x)
in the system (4.2), so we have

o(n+ 1) =Ax(n) + f(a(n), A(x(n)

(4.6) y(n+1) =Bh(z(n)) + g(z(n), h(x(
=h(Az(n) + f(x(n), h(z(n))))

This leads to the functional equation

(A7) F(h(e)) = hAz + f(x, h(x))] — Bhz) — g(x, h(x)) = 0

We approximate the solution of (4.7) by power series, thus we write h(z) as

(4.8) h(x) = az® + bx® + O(z*)

Example 4.2.4. [7, p.242] Consider the system

49 ()= G )0 ()

The origin is obviously a fixed point for (4.9) which is non-hyperbolic, the
center manifold for system (4.9) can locally be represented as follow

We = {(r,y) € R*: y = h(x), |z| < §,h(0) = K'(0) = 0}
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for ¢ sufficiently small. We assume that h(z) has the form

(4.10) h(x) = az® + bx® + O(a?)

We recall from (4.7) that the equation for the center manifold is given by
(4.11) F (h(z)) = h|Az + f(x,h(z))] — Bh(xz) — g(z, h(z)) =0

where, in this example, we have

A=—1 B=_—-
flz,y) =y g(x,y) =x

hence equation (4.11) becomes

(4.12) W=z + zh(z)) + %h(x) _2=0
Substituting (4.10) into (4.12), this yields

(4.13) az® — bax® + %(cw;'2 + b2 + O(2h) — 22 =0
Hence

2
50~ 1=0 or a= 3
1
—gb= 0 or b=0
Consequently h(z) = 222 + O(2*) and the map f on the center manifold is
given by

2
T —x+ §x2 + O(2%)

4.3 The Neimark-Sacker bifurcation

We now focus our attention on the case when the Jacobian matrix has two
complex conjugate eigenvalues with modulus equal one. We illustrate this
case by the following example
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Example 4.3.1. [7, p.250] Consider the map

(4.14) F, (2) = (L4 p—af —a3) (;)s g 7:2:;5) <i;>

Where (= 3(u)is a smooth function of the parameter pand 0 < 5(0) < 7.
It is clear that the origin is fixed point. The Jacobian of the system given in
(4.14) is given by

oh  0h
Ox1  Ox2
(4.15) JF, =
ofr 0f2
Ox1  Ox2
Where
oh - .
Fre (1+ p)cosp — (3] + x5)cosf + 2x 29510
ofr _ : 2, o 2y
Ao —(1 4 p)sinf + (7 + 3x3)sinf — 2x1x5c083
)
f _ : 2, 2y
Froe (1+ p)sinf — (3z7 + x3)sinf — 2x w9008
0fs 2, o2 :
By = (14 p)cosp — (] + 33)cosf — 2x 29510

The Jacobian matrix evaluated at the fixed point (z1,z5) = (0, 0) is given by

B cosB —sinf
(4.16) J =1+ pu) (sinﬁ cos 3 )

Now we find the eigenvalues of J by solving the characteristic equation which
is

(1+ 1)2((cosB — X)? + sin?B) = 0
thus
A —2X\cosf+1=0

Hence the eigenvalues of J are Ao = (1 + p)e*™, and their modulus is
|A12] = |1 + p], hence at p = 0, we have |A\; 2| = 1. Thus the two complex
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conjugate eigenvalues lie on the unit circle. It is clear that we have a Neimark-
Sacker bifurcation. Also the origin is asymptotically stable when —2 < p < 0.
To simplify the idea, we will invert the coordinates to the polar. Substi-
tute in equation (4.14) the relations z1(n) = r(n)cosé(n) and x2(n) =
r(n)sinf(n), we get

zi(n+1) = ((1+ p)r —r*) cos(0 + B)
zo(n+1) = ((1+ p)r —r®) sin(0 + 3

~—

and note that r(n+1) = /23(n +1) +23(n +1) and O(n+1) = tan™! iiEZIR
hence we have

. r(n+1) = (14 pr(n) — r*(n)
' O(n+1)=60(n)+ 3

Bifurcation of the system (4.17) as u passes through 0, can be easily deter-
mined. We can see that 6 in the system (4.17) is independent of p, also this
equation describes the rotation which depends on 6 and 5. Furthermore,
the first equation in (4.17) defines a one dimensional map, whose fixed point
is r = 0. This fixed point is stable for —2 < p < 0 and unstable for
uw>0. At p =0 the stability of the origin can be determined by cobweb
diagram of r —— r — 3, which shows that the origin is asymptotically
stable ( see figure 4.1). Also the stability of the origin when g = 0 can be
determined by taking the third derivative of the r-map at r = 0, which is
less than zero, hence the origin is asymptotically stable. Moreover the one
dimensional r-map of the system (4.17) has one additional stable fixed point
7 =/ for 0 < p < 1. Thus the origin is surrounded for small x> 0 by
closed invariant curve of radius # = /i, and all the orbits starting outside
or inside the closed invariant curve expected at the origin tend to the curve.
This is a supercritical Neimark-Sacker bifurcation.
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f(x)

Figure 4.1: The cobweb diagram of the map r — r — 73

The diaigram shows that when p = 0 then the fixed point x = 0 is asymptotically
stable.

Remark 4.3.2. [7, p.250-252] and [4, p.125-127] For the system

(4.18) F, (i;) = (14 p+a +a3) (Zif g _ccs,lsnﬁﬁ) (il)

The polar form associated with this system is

r(n+1) = (1 + p)r(n) +r°(n)
On+1)=60(n)+p

This model can be analyzed as the previous one, but here we have a sub-
critical Neimark-Sacker bifurcation. But here the fixed point 7 = /—pu is
unstable closed invariant curve for p < 0, which disappears when p vary
from negative to positive value.

4.4 The trace-determinant plane

We note that the eigenvalues of the Jacobian matrix play a basic role in
determining the type of bifurcation in the plane. We now introduce an im-
portant result in trace-determinate plane which illustrates the bifurcation of
two dimensional maps.

Theorem 4.4.1. [7, p.249]
Consider the map

(4.19) x— f(z, p), reR? pcR!

and let J be the Jacobian matriz, where J = Df, (&, ). The following are
true
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(a) If trJ — 1 = detJ, then the system(4.19) undergoes a saddle-node bifur-
cation.

(b) If —trJ — 1 = detJ, then the system (4.19) undergoes a period-doubling
bifurcation.

(c) If |[trJ| — 1 < detJ and detJ = 1, then the system (4.19) undergoes a
Neimark -Sacker bifurcation.

Proof. Let J = Df,(, t) be the Jacobian matrix of system (4.19). We know
that the characteristic equation of J is given by

AN — (trJ)A + (detJ) =0

thus the eigenvalues are

1
(4.20) Ao = i[trJ + /(trJ)? — 4det.J]

(a) let trJ — 1 = detJ, then (trJ)* — 4detJ = (trJ — 2)* > 0, this implies
that the eigenvalues are real numbers. Then substitute the value of detJ
in (4.20), we get

(421) /\172 = {1

thus the map (4.19) undergoes a saddle-node bifurcation.

(b) Similarly, if —trJ — 1 = detJ then (trJ)? — 4detJ = (trJ + 2)* > 0, so
we have two real eigenvalues, and consequently

-1
1.22 A =
(4.22) b2 {—det]

thus we have a period - doubling bifurcation.

(c) If [trJ| — 1 < detJ and detJ = 1, then (trJ)? — 4detJ < 0. Hence we
have two complex conjugates eigenvalues

1
Ao = i[trJ + iv/4detJ — (trJ)?]
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thus

1
Mol = |5ltr + in/AdetJ — (trJ)?]

(4.23) = %\/(trJ)2 + 4detJ — (trJ)?

= VdetJ
=1

So we have a Neimark-Sacker bifurcation .
0

This theorem shows that the trace-determinant plane has three critical re-
gions which are D =T —1,D = =T — 1,and D = 1, we illustrate the
theorem by the following example.

Example 4.4.2. Consider the following linear system

z1(n+ 1) = 2z1(n) 4+ 3x2(n)

(4.24) To(n+ 1) = (14 p)zi(n) + 4a5(n)

The Jacobian matrix associated with the previous system is

(4.25) J= (ﬁu j)

as u varies, the trace of the Jacobian matrix "trJ” is always 6, while the
determinant of the matrix "detJ” is always 5 — 3u. We are moving vertically
in the (7'— D) plane along the line 7" = 6. Now if D < —T' — 1 which occurs
if © > 4 the associated eigenvalues in this case are A\; > 1 and \y < —1,
thus we have a source fixed point. When D = =T —11i.e D = —7, u takes
a critical value which is 4, and here we have period-doubling bifurcation.

When -7 — 1 < D < 1 this happens when ‘31 < pu < 4. In this case the

eigenvalues are \; > 1,0 > Ay > —1, so the fixed point in this region is

saddle. When 1 < D < T — 1, which is associated with 0 < pu < %, then
A1 > 1 and 0 < Ay < 1, thus the fixed point is saddle. Moreover when
T—-1<D< %2, that is _?4 < p < 0, then A5 > 1, so we have a source
fixed point. A saddle-node bifurcation happens when D = T — 1, at the
critical value 4 = 0. When D > TTQ and p < %4 we have a conjugate complex

eigenvalues with |A| > 1 so the fixed point is spiral source.



Chapter 5

Bifurcation of logistic
competition model

5.1 Introduction

We studied before the dynamic behavior of the logistic population model
which depends on the assumption that there is no inter-specific competition
between species. Here we introduce a new model which considers the inter-
specific competition between two different species, in which each species affect
negatively the growth of the other, [2].

The logistic competition model is given by

ax, (1l — x,)
Tpyg = ——— 2
L S

(5.1)

byn(l - yn)

Yntr = 777 dz,

where a,b > 0, and ¢,d € (0,1). The parameters a and b are known as
intrinsic growth rates of species x and y, the parameters ¢ and d are known
as the competition parameters of x and y.

The map associated with the system (5.1) is given by

ar(l —z) by(l —vy)
l+cy ' 1+dz

52) Pl = (

With two assumptions

41
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1. z and y are in [0, 1]
2. a and b are in (0, 4]
It is clear that F" maps [0, 1] x [0, 1] into [0, 1] x [0, 1] because the maximum

of the z-component is ¢, which occurs at x = % and y = 0, and the maximum

of the y-component is% and it occurs at z =0 and y = %

5.2 Fixed points

To find the fixed points of the map F', we must solve the following system of
equations

ax(l —x)
14 cy

by(1 —y)

1+dz

It is clear that (0,0) is a solution for the previous system. Now we take the
case where z # 0 and y = 0, this leads to x = ax(l — z), so z = ‘%1, and if
we take z =0 and y # 0, so y = by(1 — y), this leads to y = ”’Tl And if we
take x #£ 0 and y # 0, then we must solve the following system of equations
a(l—x)=14cy
b(l—y)=1+dx
So
a—ar—1
Y= —>7"
c

substitute the value of y in the above system, hence

B —cb+ab—b+c
ab — cd

and

B —da+ab—a+d
y= ab — cd

We find that the map F' has one extinction fixed point (0,0), one coexistence
fixed point
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(

5,9) = —cb+ab—b+c¢ —da+ab—a-+d
Y= ab — cd ’ ab — cd

and two exclusion fixed points (“T_l, O), (0, b_Tl)

Lemma 5.2.1. Ifa =1, then for alln € Z*,

n—1
(5.3) v, <ao [[1-2), nezt
=0

Proof. Depending on the fact that x,.1 < z,(1 —z,), we prove by induction
that for all n € Z*

n—1

T, < To H(l — ;)

=0

When n = 1, we have the following inequality
T S 1’0(1 — .To)

which is true, so (5.3) is true for n = 1.
Let k € Z" be given and suppose (5.3) is true for n = k. Then

Tr1 < (1 — x1)
k-1
< 9 H(l — ;) (1 — zy) (by induction hypothesis)
i=0

k
< x H(l — ;)
=0

Thus (5.3) holds for n = k + 1, so (5.3) is true for all n € Z*.

Lemma 5.2.2. If a = 1, then the inequality,

n—1

(5.4) [Ja—2) <@ =)

=0

holds for allm € Z™.
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Proof. From 1 —x; < 1—x;,1, and by induction we will show that inequality
(5.4) holds for all n € ZT.When n = 1 we have (1 — ) < (1 — 1), so (5.4)
is true for n = 1. Let k € Z* be given and suppose that (5.4) is true for
n = k. Then

k

| JEED)

=0

T
L

(1 —x;)(1 — )

o

1—a2)f (1 — ) (by induction hypothesis)
)k:-&-l‘

IA
~~ o~ =

1—[L‘k

5.3 Stability analysis

5.3.1 Stability of the extinction fixed point

Now we investigate the stability of the fixed point (0,0).

Lemma 5.3.1. Let (z,,y,) denotes the solution of the logistic competition
model (5.1) with initial condition (xo,y0) € (0,1) x (0,1). If a € (0,1] then
lim, yoo , = 0, if b € (0,1] then lim, oy, = 0. Moreover if a,b € (0,1]
then lim,, o0 (2, yn) = (0,0).

Proof. From the system (5.1) it is clear that

ax, (1 — x,)

< ax, —ax® < ax
l4cy, ~— " o=

0< Tpt1 =

hence
Tny1 S ATy

by simple iteration we find that

T, < a"zg

So if a € (0,1) then lim, ,oo x, =0, Vn € Z. When a = 1 then z,,1 < z,,
this is a decreasing sequence which is bounded, hence it converges as n — oo.
Let L be the limit of this sequence where

0<L<zx,<1 Vn € Z
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By using the inequalities (5.3) and (5.4), we find that

ZTo - o
n< 1 ; < 1 nn+1< 1 nn
X =7 [Enil_ol( —x)_l xn( —LL’) _( —SL’)

but we have L < z,, < 1 which implies that 0 < (1 —z,) <1— L, so
r, <(1—a,)"<(1—-L)"

thus

lim z,, =0
n—oo

We can use the same argument to show that lim,, . y, = 0 when b € (0, 1]

]

This lemma gives us the sufficient condition for the stability of the extinction
fixed point. We can say that the fixed point (0,0) is asymptotically stable if
and only if a € (0, 1] and b € (0, 1].

Note that the Jacobian matrix of F' is given by

a(1—2x) —acz(l—x)
I+cy (14cy)?
JF(z,y) =
—bdy(l—y)  b(1-2y)
(1+dzx)? 1+dz

The value of the Jacobian matrix at the fixed point (0,0) is given by

Jo = JF(0,0) = (g g)

It is clear that the eigenvalues of Jy are \{ = a and Ay = b. And we know that
the fixed point is asymptotically stable if and only if || < 1 and |Ag] < 1.
This result is consistent with lemma 5.3.1 which states that the fixed point
(0,0) is asymptotically stable if 0 < @ < 1 and 0 < b < 1. Thus, it is unstable
when a > 1or b > 1.

5.3.2 Stability of two exclusion fixed points

We now study the stability of exclusion fixed point ("%1, O).

Lemma 5.3.2. The fized point (“T_l, O), 1s asymptotically stable if 1 < a < 3
and b<1+d (aT_l)
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Proof. The Jacobian matrix at this point is

2_a —c(a—1)

_1 a
Ja:JF(a ,0):
a 0 ab

ad+a—d

The eigenvalues of J, are Ay = 2 —a and Ay = Z_ 5. This fixed point is
asymptotically stable if and only if |A;| < 1 and |Ag| < 1 this is equivalent to

l<a<3

and

ab

_1<—
ad+a—d

<1

which is equivalent to

—ad—a+d<ab<ad+a—d

SO
d(l —a)— dla —1
(1—a) a<b< (a—1)+a
a a
which implies that
d(1 — dla —1
-1+ ( )<b<1+ (e )
a a
but
2<1—a<0
3
hence
d(1 —a)
-1+ <0
a
so we have 4 .
0<b<1+M
a

]

Note that if @ = 1 then the exclusion fixed point (%1, 0) is the extinction
fixed point (0, 0).
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Theorem 5.3.3. Ifa =3 and b < 1+ %d, then the exclusion fixed point
(“T_l,()) = (%, 0) 15 asymptotically stable.

Proof. If a =3 and b < 1 + %d, then \;y = —1 and A\ < 1, thus the fixed
point (‘%1, O) = (%, O) is non hyperbolic, and to check its stability we apply
the center manifold theorem. First we shift the point (“=%,0) to the origin,
to do this we assume the following transformation

a—1

So the system (5.1) becomes

a(up, + 1) (1 = (uy + £2)) _a—1

f(u7 U) = Un4+1 =

1+ cv, a
(5.5)
bu, (1 — vy,)
U, V) = Vpy1 =
N
Note that

dg _ —bdv(1 —v)
Ou  (1+d (u, + <L)

dg _ (1+d(up+%2)) (b—2bv)
dv (1+d (un +23))°

Hence the Jacobian matrix of the system (5.5) is

—2au—a+2 c(auta—1)(au—1)
- 1+cv a(l+cv)?
JF (u,v) =

a’bdv(v—1) ab(1—2v)

(a+adu+ad—d)? a+adu+ad—d
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The Jacobian matrix of system (5.5) at (0,0) is

2 _a —c(a—1)

~ a

JF(0,0) =
0 a+gfl—d
When a = 3, we have
) -1
JF(0,0) =
0 =3
3+2d

And system (5.5) becomes

ot o) (D))

1 ((3un+2)(1 — 3u,,) _2)

3 (1+ cuy)

—3u, — 9u? — 2cv,

3(1 4+ cvp)
and
3bu, (1 —vy,)
Un+1 =
3+ d(3u, +2)
Now we will add and subtract the linear relations u,, + %cvn and %%dvn from

Up1 and v, respectively, so

2 —3u, — 9u? — 2cv,
Up41 = —Up — gcvn + 3(1 T ) + u, + gC'Un
— gcvn N 1 —3u, — 9uj — 2cv, + (Buy + 2c0,) (1 + cvy)
3 3 1+ cv,
2 1 3cu,v, — Yu2 + 2¢%0?

3 3 1+ cv,
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And

3b N 3bv, — 3bv? 3b
Un, == Un - Un
T3 9 3+ 3du, +2d 3+2d

_ 3 B 2d)Bbu, - 3bvZ) — 3bv, (3 + 3du, + 2d)
342" (3 + 3du, + 2d)(3 + 2d)
3b —3bv, (3duy, + 3v, + 2dv,)

=324 T 91 0du, + 124 + 62w, + A2

Hence when a = 3, system (5.5) can be written as

Upy1 = — Uy — gcvn + f(un,vn)
(5.6)
e G, v0)
Un, = Up, Up, Up,
+1 31 2d g
Where
< 3cun vy, + 2702 — 9u?
f(una Un) =
3(1 + cvyp)
and

3du,, + 3v, + 2dv,
9 + 9du,, + 12d + 6d?u,, + 4d?

G(tUn,v,) = —3buy,

Consider the center manifold v = h(u). Let us assume that the map h(u)
takes the form

h(u) = au® + Bu® + O(u?), a,feR

We must find the two constants « and [, since h(u) satisfies the center
manifold theorem, so it satisfies the following equation

5 3b

h(—u — ;Ch(u) + f(u, h(u))) — 3+ 2d

After some calculation we have that & = 0 and g = 0, which implies that
h(u) = 0. The dynamics restricted to the center manifold are given by the
map

h(u) = g(u, h(u)) =0

U —u — gch(u) + fu, h(uw))
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Thus on the center manifold h(u) = v = 0, we have the following map

Q(u) = —u — 3u?

and since 2—2(0) = —1, we must find the Schwarzian derivative of ) when

u = 0, where

3
SQ(0) = —Q"(0) = 5(Q"(0))* = =54 <0
so the fixed point (%, 0) is asymptotically stable. ]

Now we will check the stability of (¢=*,0), when 1 < a < 3and b = 1+d(%1).

Theorem 5.3.4. The fized point (“=*,0) is unstable when 1 < a < 3 and
b=1+d(=?).

Proof. The value of the Jacobian matrix J when b =1 + d(%l) is given by

2 _a —c(a—1)

JF(0,0) =
0 1

In this case we have |A\i| = |2 —a| < 1 and || = 1. It is clear that the fixed
point (0, 0) is non hyperbolic, so to check its stability we must use the center
manifold theorem. When b =1+ d(“2) system (5.5) becomes

a(un + T = (u +275)  a—1
1+ cv, a

Up+1 =

(a+ (a—1)d)(1 — v,)vy,
a+ d(au, + (a —1))

Up+1 =

Now we will add and subtract the linear relations (2 — a)u,, — @UH and
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Uy 10 Upyq and v,y respectively, hence

cla—1) +a(un+C‘%‘Ll)(l—(1¢,1—|—‘1T*1)) Ca-1

pu— 2 —_— —
ot = )t a o 1+ cv, a
— (2= a)u, + cla = 1)’Un
a
C(a _ 1) 1 2 a—1
=2 - a)u, - 1)1 =, —
( a)un a Un + a(l T C’Un) [(CL Un —+ a(a, ))( Up, . )]
1
+ —a(l p )[—(a — D14 cvp) — (2au, — a®u,) (1 + cvy) + (acv, — cvy) (1 + cvy,)]
cla—1) —a*u? — 2acu,v, + a*cuyv, — 2 + ac*v?
= (2 - a>un - Un +
a a(l + cvy,)
and
S e ) S T
mee a+ d(au, + (a — 1)) "
1
=Unt ((a + ad — d) (v, — v2) — va(a + adu, + ad — d))

" —d+a(l+d+ duy,)

—v,(av, + adv, — dv, + aduy,)
—d+a(l +d+ duy)

:’Un

So we can write system (5.5) as

Un+1 (2 - a) —@ Unp f(una Un)
(5.7) = +
Un+1 0 1 Un g(una Un)
where
A —a2u31 — 2acu,v, + azcunvn — czvi + ac%i
f(um Un) -
a(1l+ cuy)
and

Un(—dvy, + a(vn + d(uy + vy,)))

Consider the center manifold u = h(v). Let us assume that the map h takes
the form

G(Un,vn) = —

h(v) = —gv + av? + Buv?
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and h(v) satisfies the following equation

h(v+ g(h(v),v)) — (2 —a)h(v) + C(aft_l)v — f(h(v),v) =0
We find that
N ac — cd + acd — c*d

"~ (—a+a®)(a—d+ad)

_ 2dc+a’c® — dacd + 4aPed — bactd — a*Pd 4 2a°cAd
58) P~ (—1+ a)ala—d + ad)?
—a?ctd + 2cd? — 4acd? + 2a%cd? + 6c2d? — 6ac*d?
(—1+a)?a(a — d + ad)?
—a?d® + a’ctd? + 43d? — a’c3d?
(—1+a)?a(a — d+ ad)?

Thus on the center manifold u = h(v) we have the following map

Q(v) = v+ g(h(v),v)

dv? — av(v + d(—<v + av? 4 v +v))
—d+a(l+d+d(—5v+ av? + Sv?))

:/U—Iv—

adv + av — dv + dv? — av? — adv?
—d — cdv + a + ad + adav? + adfv?

So that the map Q(v) on the center manifold is given by

B (a —d+ad)(—1+v)v
—d(1 + cv) +a(l + d + dvila + dv3p)

Qv) =

Since Q'(0) = (M)Q = 1 and Q"(0) # 0, the fixed point (%1, ) is

—d+a+ad
unstable. n

We make the same argument to check the stability of the fixed point (0, b’Tl)

Lemma 5.3.5. The fized point (0, b_Tl) is asymptotically stable if 1 < b < 3
and 0 < a < 1+c(b’Tl).
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Proof. The Jacobian evaluated at the fixed point (0, 1) is given by

ab
b —1 b+cb—c 0

Jy=JF(0,—) =

b —d(b—1)
—5  2-0

The eigenvalues of J, are \; = m and Ay = 2 —b. Hence the fixed point

(0, 221) is asymptotically stable if 1 <b <3 and 0 < a < 14 ¢ (%2). O

Now we will study the stability of (0, ) henb=3and0 < a < 1+c¢ (b’Tl),
and also when 1 <b< 3 and a =1 (b)
b—1
b

Theorem 5.3.6. The fized point (0,
and a < 1+c(b 1)

) is asymptotically stable if b = 3

Proof. In this case |A\] < 1 and Ay = —1, so the point (0, %%) = (0, 2) is non
hyperbolic fixed point. In order to apply center manifold theorem, we make
a change of variables in system (5.1), so we can shift from the point (0, &)
0 (0,0). Let u =z and v =y — (%1). then the new system is

L at, (1 — uy,)
mH 1+c(v+b;b1)
(5.9)
o bl ) (= (a4 5) b1
kT 1+ du, b

The Jacobian matrix of system (5.9) is

—ab(2u—1) —ab%cu(1—u)
b+bcv+bc—c (b+bcv+bc—c)?
Jf(u,v) =
d(bv+b—1)(bv—1) —(2bv—2+b)
b(1+du)? 1+du
At (0,0), Jf(u,v) has the form
ab
b+c(b—1) 0
Jf(0,0) =
—d(b—1)
bl gy
When b = 3, we have
3a
3+2c 0
Jf(0,0) =
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We use the technique which is used in proving the previous theorems to write
system (5.9) as

3a -

Up+1 = 3 + QCun + f(una Un)

Upy1 = —Up — gdun + G, vy)
Where

f ( )= —9acu,v, — 9a 6acu
Up,, Un
9+ 9cv,, + 12¢ + 602vn + 4¢2

and

1 3duy,v, — 9% + 2d%u?

9l t) = 3

Let us assume the center manifold u = h(v) take the form
h(v) = av® + Bv?
The function h must satisfy the center manifold equation

3a
3+ 2d

h (—@ - gdh(v) + f](h(v),v)) _ hv) — F(h(v),v) = 0

Solving this equation yields & = 0 and 8 = 0. Hence h(v) = 0, thus on the
center manifold v = 0, we have the following map

N(v) = —v —3*
Note that N’(0) = —1, and the Schwarzian derivative of N at v = 0 is

§(N”(O))2 =—54<0

SN(0) = —N"(0) =

hence the fixed point (O, I’_Tl) = (O, %) is asymptotically stable. O

Now we will study the stability of ( bT) when 1l <b<3anda=1+ C(bffl)
b—1

0,
Theorem 5.3.7. The fixed point (
c(b 1)
a=1+

) 1s unstable when 1 < b < 3 and
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Proof. In this case we have

1 0
JF(0,0) =

d(b—1)
== 2-0b

Note that \; = 1 and |As| < 1, so the point (0, I’_Tl) is non hyperbolic fixed
point. We can write system (5.9) as

Ut 1 0 Uy, f(un,vn)
= -
va)  \cte=0 o) \o ) Gl o)
where
~ u(—cu + b(u+ c(u + v
Fu) et bt efu+ 1))
—c+b(1+c+ cv)
and

—b%v? — 2bduv + b*duv — d*u? + bd*u?
b(1 + du)

Let we assume the center manifold v = h(u) take the form

9(u,v) =

d
h(u) = U + au® + Bu?

The map h must satisfy the equation
~ dib—1
h(u+ f(u, h(u))) + ( 2 )u
This leads to
f—_ 20%d + b3d? — 4bed + 4b%ed — 6bed? — b2ed? + 2b3cd? — bPed?
B (=1 +b)2b(b — c + bc)?
N 2c¢%d — Abc?d + 20%c*d 4 62d? — 6bAd? — B*Ad? + b3Ad? + 42d3 — VAP
(=1 +0)2b(b — c+ be)?

— (2= 0)h(u) — g(u, h(u)) = 0

and
bd — cd + bed — cd?
(=b+0?)(b—c+be)
Hence the map on the center manifold is given by
P(u) = u+ f(u, h(u))
L (b—c+bc)(—1+u)u
 —c(14du) + b(1 + ¢ + cua + cudB)
We find that P’(0) = 1 and P”(0) # 0, so the fixed point (0, %) is unstable.

]

o= —
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5.3.3 Stability of the coexistence fixed point

We will study the stability of coexistence fixed point

(3,9) = —cb+ab—b+c¢ —da+ab—a-+d
wY) = ab—cd | ab—cd

Lemma 5.3.8. The positive coezistence fixved point (&,7) exists if

a—1>b—1 p b—1>a—1
c b d a

where a,b > 1 and ¢, d € (0,1).

Proof. from the assumption that @ > 1 and b > 1 and ¢,d € (0,1), so
ab — cd > 0, and since

bla—1)—c(b—1)

= >0
v ab — cd
SO
bla—1)—c(b—1)>0
hence
a—1 b—1
c
and since b—1)—df 0
alb—1) —d(a —
= 0
Y ab — cd -
SO
b—1>a—1
d a

The Jacobian matrix at the fixed point (Z,7) is given by

a(1-2%) —act(1—%)
1+cg (14-cg)?
J.=JF(z,9) =
—bdj(1-g)  b(1-27)
(1+d#)? 1+di
and by noting the following relations
1 0 14 dz

+Cy:1—:i“ and + le—gj

a b
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then J, becomes

1-2% —ci
1-2 a(l—2)
J, = JF(#,7) =
—dy 1-2y
b(1-9)  1-9

Theorem 5.3.9. The coexistence fixed point (I, 1) is asymptotically stable if
l<a<3andl <b<3.

Proof. 1t is difficult to find the eigenvalues of J,, so we resort to Jury test,
which states that the eigenvalues of J, lie inside the unit disc if and only if

p(1)>0  p(=1)>0  p(0) <1

where p(A) is the characteristic polynomial of J,, where

e o= (=5 ) (27 ) Sy

Note that the fixed point (Z,7) is the solution of the system

ar+cy=a—1

(5:11) dr+by=0-1
this yields

. a—1 ¢ a-1

i = ——j<

a a a

and

. b—=1 d_ b-1

b= Tyt
We a2ssume that 1 <a <3 and 1 < b < 3, which implies that & < % and
y <z

Now from (5.10) we have that
123 12§ “ig
p1) =~ 1 LA p—r
1—a 1—9 (1=2)(1-9)
_( @ -9\ Sy
1—2)\1-9) (Q-2)(1-9)

_ dy— gy
(1-2)(1-9)
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but
d
1-#)(1—9)>0  and ;%g<1—%) >0
thus
p(1) >0
And

(2—32)(2—39) — Liy
(1—2)(1-9)
Since (1 — 2)(1 —g) > 0 it follows that p(—1) > 0 if and only if

cd
2—-32)(2—-39) — —z2y >0
( Z)( 9) &9
which is equivalent to
d
(9—%) 29> 6(2 +9) — 4

which is true under the hypothesis that 1 < a < 3 and 1 < b < 3. Thus
p(—=1) > 0.
Now we check the last condition of Jury test, p(0) < 1, but

o) = (12000 = 2) — 5

p(0) = - -

(1—2)(1—9)
The relation p(0) < 1 is equivalent to

(1—22)(1—29) — Yzg

- - <1
(1—-2)(1 -9
Now the inequality
1—28)(1 —29) — Zig
(1-2)(0-2) iy |
(1-2)(1-9)
is equivalent to
d 1 1
3—c—<7+7
ab T g

which is true under our assumption that 1 <a < 3 and 1 < b < 3. Thus the
relation p(0) < 1 is verified, and the coexistence fixed point is asymptotically
stableif 1 <a<3and 1 <b< 3. O
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5.4 Bifurcation analysis

We will explain the bifurcation in logistic competition model. We consider
the saddle-node, period-doubling and Neimark-Sacker bifurcation. We use
the conditions in the trace-determinant plane to determine the parameter
space in which these types of bifurcation happen. We focus our attention on
the bifurcation of coexistence fixed point. Firstly note that

(1 —22)(1 —29) dczy

det(J,) = 1—2)(1—9) ab(l—2)(1—7g)

120 49)+ (4— %) iy
(1—2)(1—19)
by substituting the value of  and g, we have

—c(b—c+be)d* + a*b*(2 — b+ 2d) — ad(3bc — b*(4 + 5¢ + )

det(J.) = (ab(—(1 + ¢)d + a(1 4 d))(=b(1 + ¢) + ¢(1 + d)))
—adc*(1 +d) 4+ a®b(2b*(1 4 ¢) — b(4 + 6¢ + 6d + 5ed) + c(4 + 5d + d?))
(ab(—(1 4+ c)d + a(1 + d))(=b(1 + ¢) + c(1 + d)))
and
1—2¢ 1-2§
) =T T

2 —3(2+y) + 42y
1—(Z+9)+12y
this leads to
1r(J.) _a?b(14d) +d(b(4+ Te+3¢%) — (4 + 3¢+ 3d + 2cd))
o (14 ¢e)d —a(l+d))(b(1+c)—c(1+d))
a(V*(1+¢) — b(4 + 5c + 5d + 6¢d) + (4 + 7d + 3d?))
(14+c)d—a(l4+d)(b(1+c)—c(l+d))
where tr and det denote the trace and determinant of the Jacobian matrix
.

We know that the coexistence fixed point is asymptotically stable if the
following inequality is satisfied

(5.12) ()| — 1 < det(J,) < 1

this is equivalent to
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(i) the inequality det(J,) < 1 leads to

—c(b—c+be)d* + a*b?(2 — b+ 2d) — ad(3bc — b*(4 + 5¢ + ) + *(1 + d))
(ab(—(1 4+ e)d + a(l + d))(—b(1 + ¢) + (1 + d)))
a?b(20*(1 + ¢) — b(4 + 6¢ + 6d + 5cd) + (4 + 5d + d?))
(ab(— (14 c)d+a(l +d))(—=b(1 +¢c) + (1 +d)))

—-1<0

so we have

(5.13)
—c(b—c+be)d* + a*b*(2 — b+ 2d) + a(b — ¢ + be)d((3b + ¢ + cd)
(ab(—(1 4+ c)d+a(l+d))(—=b(1 +c) + (1 +d)))
a?b(20*(1 +¢) + 3c(1 +d) — b(3 + 5d + ¢(5 + 4d)))
(ab(—(1+c)d+ a(l +d))(=b(1 + ¢) + c(1 + d)))

<0

(ii) and the inequality det(J,) > tr(J,) — 1 leads to

(b(—14+a—c)+c)(a(—1+b—d)+d)(ab — cd)

b~ +)d+all + D) b1 to)+e(itd) 0

(5.14)

(iii) The inequality det(J,.) > —tr(J,) — 1 is equivalent to

(5.15)
—c(b—c+be)d? 4 a?b?(3 — b+ 3d) — ad(—b*(9 + 14c + 5¢%) + (1 + d))
ab(—(14+c¢)d+a(l +d))(=b(1 +c) +c(1 4+ d))
—adbc(8 + 4c + 4d + 3ed) + a?b(3b%(1 + ¢) + (9 + 14d + 5d?))
ab(—(1+c)d+a(l+d))(—=b(1+¢c)+c(1+d))
3a2b?(3 + 4d + 4c(1 + d))

T (=1t )dta(l + D) =b1 1) +e(ird) "

So that the above inequalities determine the stability region of the coexistence
fixed point in the plane. Now the saddle-node bifurcation happens in (T-D)
plane when det(J,) = tr(J,) — 1, this leads to

(b(—14+a—c)+c)(a(—=1+4+b—d)+d)(ab — cd)

ab(—(1 + c)d + a1+ d)(=b(1 + ¢) + c(1+d)) 0

(5.16)

since we assumed that a,b > 1 and ¢,d € (0,1), so the denominator in
inequality (5.16) is nonzero, and also this assumption leads to ab — cd > 0,
which implies that

(b(-14+a—c)+c¢)=0  or (a(-14b—d)+d)=0



CHAPTER 5. BIFURCATION OF LOGISTIC COMPETITION MODEL61

this leads to

bzl—l—d(a_l) or a:1+c(b_—1>
a b

Observe that when b =1+ d (“=1) the coexistence fixed point (&,§) where

(5,9) —cb+ab—b+c —da+ab—a-+d
i =

Y ab — cd ’ ab — cd

is equal to the exclusion fixed point (%1, 0), also when the coexistence fixed
point (z,7) leaves the region of its stability to the region which is determined
by

1
l<a<3 and b<1+d(a >

a

by crossing the curve b =1-+d (‘%1) it undergoes a saddle-node bifurcation
into another fixed point which is (“T_l, ()). The same thing will happen when
coexistence fixed point crosses the curve a = 1+4c¢ (b’—l) and leaves the region

b
of its stability to region which is determined by

b—1
1<b<3 and a<1+c<T)
Hence when a = 1+ ¢ (b’Tl) the coexistence fixed point collides with the
exclusion fixed point (0, b’Tl) which causes a saddle-node bifurcation. Also

the system has a period-doubling bifurcation when det(J,) = —tr(J,) — 1
this is equivalent to the equality

(5.17)
—c(b—c+be)d* + a*b*(3 — b+ 3d) — ad(—b*(9 + 14c + 5c2) + (1 + d))
ab(—(1 + O)d + a(1 + d))(=b(1 + ¢) + ¢(1 + d))
a?b(30*(1 4 ¢) + (9 + 14d + 5d*) — 3b(3 + 4d + 4c(1 + d)))
ab(—(1+c)d+a(l+d)(—=b(1 +c¢) + (1 +d))
adbc(8 + 4c + 4d + 3cd)
Cab(—(1+ ¢)d + a(1 4+ d))(=b(1 + ¢) + c(1 + d))

=0

denote by 7 the curve which satisfies the equality (5.17). When a and b
passe the curve 7 the coexistence fixed point undergoes a period-doubling
bifurcation into a coexistence 2-period cycle. After this curve, the coexistence
becomes unstable, and the system has an asymptotically stable coexistence
2-periodic cycle.
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We know that the region of stability of the two exclusion fixed points (“—_1, 0) ,
(0, b_Tl) is determined by the inequalities 1 <a <3,0<b< 1+d (‘%1 and
1<b<3,0<a<l+c (b_Tl) respectively. We prove that when a = 3 the
fixed point (“T_l, O) is non-hyperbolic fixed point and the map on the center
manifold has a first derivative which is equal to —1. Hence when a = 3 and
0<b<1+d (“T’l) the exclusion fixed point (%1, O) undergoes a period-
doubling bifurcation, the same thing happens to the fixed point (0, 17—71) when

b:3and0<a<1+c(b_71).



Chapter 6

Analysis of discrete-time
predator-prey system

6.1 Introduction

Now we consider the growth of two interdependent populations, one species
”the prey” and the other species is "the predator”, [1].

The predator- prey system is given by :

f(Nt, Pt) = Nt+1 = Nt + TNt(l - Nt) - CLNtPt

6.1
(6.1) g(Ny, P,) = Py1 = P, +aP,(N, — P)

Where N; and P, denote prey and predator densities respectively, while r
and a are positive constants.
In the absence of predators ” P = 0”7 the growth of prey population will be

Nt+1 = Nt + TNt(l — Nt)

The term (—aN,P;) represents the rate of decrease in prey species due to
predation, so the prey growth rate falls as the predator population become
larger. In absence of prey the growth of the predator population follows the
logistic model.

We will study the dynamical behavior of predator-prey system, and its fixed
points.

Theorem 6.1.1. The system (6.1) has three fized points which are (0,0), (1.0)

and (N*, P*), where N* = P* = .

63
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Proof. The fixed points of system (6.1) satisfy the following system of equa-
tions:

N =N+rN(l—=N)—aNP

(6.2) P =P+ aP(N - P)

It is obvious that (0,0) is a solution for the previous system. Now take the
case when N # 0, so from the first equation we have

(6.3) P = M, where a#0
a

Substitute (6.3) in into the second equation, we get the following equation :

r(1—N) <N—r(1_aN)> =0

This leads to two solutions

N=1
or
N=—
a—+r
If N =1 then P =0, also when N = - then P = _*—. Hence system (6.1)
has three fixed points : (0,0), (1,0) and (air, air). ]

6.2 Stability analysis of predator-prey system

Now we will study the stability of these fixed points which is determined
by the modulus of eigenvalues of the Jacobian matrix at the fixed points.
Observe that the Jacobian matrix of system (6.1) is :

1+7r(1—-2N)—aP —aN
J(N,P) =
aP 1+ aN — 2aP

Lemma 6.2.1. The fized point (0,0) is unstable.
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Proof. Note that the Jacobian matrix evaluated at the fixed point (0,0) is
given by

1+7r 0
J(0,0) =
0 1

In this case the matrix has two eigenvalues: \;y = 14 r and Ay = 1. Since
|IAd1] > 1, so (0,0) is unstable, such a point is called non hyperbolic fixed
point because one of the eigenvalues has a modulus equal to one. O]

Lemma 6.2.2. If0 < r < 2 then (1,0) is saddle fized point.

Proof. The Jacobian matrix evaluated at the fixed point (1,0) is given by

l1—r —a
J(1,0) =
0 1+a

The corresponding characteristic equation is
pN) =X =2+ (a—r)A+(1+a)(l—7)

Its roots are Ay = 1 —r and Ay = 1+ a, note that |A\s| < 1 if and only if
|1 — r| < 1. This holds when 0 < r < 2, and since |Ay| = |1 +a| > 1 for all
a > 0 so the point (1,0) is saddle fixed point. O

In the next theorem we give sufficient conditions for the stability of the
positive fixed point (N*, P*) = ( L I )

a+r? a+r

Theorem 6.2.3. The positive fized point (N*, P*) is asymptotically stable if

4 ar
2_;<a+r<1'

Proof. At (N*, P*), the Jacobian matrix is

2r2 ar ar
*( . *) 1 + a+r a+r a+r
J*(N*, P*) =
ar ar 2ar
a+r 1 + a+r a+r
1— r2 —ar
a-+r a+r

ar ar
a-+r a-+r
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Note that
2
tr(J*)=1- i 1- - 9y
a-+r a-+r
and
. r? ar ar \?
det(J*) =1{1- 1-— +
a—+r a—+r a-+r
ar 2 ars ar?

a+7‘_a+r+ (a+7“)2+ (a+r)?

Thus the characteristic equation is

p(N) = X2 —tr(J)\ + det(J*)

2

=N+ (r—2)A+1—71+ ar
a+tr
And by using Jury conditions which say that if
(6.4) p(1) >0, p(=1)>0  and det(J") < 1.

then the modulus of all roots of the characteristic equation is less than one,
in other words if the previous conditions hold then the fixed point is asymp-
totically stable. We can observe that

ar?

p(l) = @+

which is positive for any a,r > 0. Also

2

ar
—1)=4-2
pl=1) r a+r
it follows that p(—1) > 0 if and only if
ar_ g 4
a—+r T
Finally detJ* < 1 hold if and only if
2
l—r+—— <1

a+r
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which is equivalent to

ar
a-+r

<1

Now combining the previous inequalities, we get the following result, the
fixed point (N*, P*) is asymptotically stable if
4 ar

2—-<
r a-+r

<1

6.3 Stability analysis of predator-prey sys-
tem with Allee effect

Now we will study the stability of predator-prey system with Allee effect.
Allee effect may be caused by variety of mechanisms applicable in small
population. In this part we will study Allee effect on prey population, as the
following system, [1] and [10].

N,
J(Ne, P) = Nyp1w = Ny +rNy(1 — Nt)ﬂ —|—tN — aN,P,
¢
(6.5)

9(Ni,pt) = Py = P+ aP(N, — P,)

Where the parameters a,r are positive, and p is the Allee constant that
satisfies the assumption

r
O<pu<—
a

We take the term /%]tvt as Allee effect.
The fixed points of system (6.5) are the solutions of the following system of

equations

N
N +7rN(l—N)——— —aNP=N
( VN

P+aP(N—P)=P
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It is clear that the point (0,0) is a solution of the system, for N # 0 we have
the following relation

1-N
p+N

then substitute in the second equation of the previous system, so

rN(1 - N) (N_ rN(l—N)) -

rIN aP

p+ N a(p+ N)
This leads to two solutions N = 1 and N = =2 By substitution we get
three fixed points (0,0),(1,0) and (N}, P;) = (T;ff, T(;ff) To investigate

the stability conditions for system (6.5), we find the Jacobian matrix. Note
that

af N i
s N) N -N)—E P
ON ( )u+N ( )(M—I—N)Q
of
= — _aN
op
99
By &
oN ~ "
g
— =1 N —2aP
ap +a a
Hence the Jacobian matrix of system (6.5) is
rN(1-2N) rN(1—N)

1+ ;U/+N +H(“+N)2 _aP _aN

J, =
aP 14+ aN —2aP

The Jacobian matrix at the fixed point (0,0) is

500 = (5 )

So (0,0) is non-hyperbolic fixed point since J,(0,0) has eigenvalues of mod-

ulus equal to one.
While the Jacobian matrix for (1,0) is

T
1 pEs] a

J,(1,0) =
0 1+a
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Lemma 6.3.1. The fized point (1,0) is saddle if and only if 0 < MTH < 2.

Proof. The corresponding characteristic equation of the matrix J,(1,0) is
PN =X\ = 2+a— — M+ (1——)1+a)
p+1 p+1
The roots of this equation are

r

AM=1-
1 Lt

)\2:1+a

It is clear |Ag] = |1 4+ a| > 1, also if |A\;] < 1 then (1,0) is saddle fixed

point. This holds if and only if —1 < 1 — uil < 1, which is equivalent to

0<A&<2. O]

Note that if 77 = 2 then |A1] = 1, so the point (1,0) is non hyperbolic fixed

point. This case will be studied when we investigate the bifurcation in the
system.
Now we study the stability of system (6.5) at the fixed point (N}, P;) =

(=2, =) | Before this note that

af * * *
a_N(NM’PM) = 1+ (T—2T'Nu)

N, ruNl’:(l—Nl’j)
prN o (p Np)?

*
—aNM

r—2rN; rp—rpN; B a(p + N;))

=1+ N*
“<u+N; (u+N;;)2 p+ N

:1+N;<T—QM_QTN:+(IN: T‘,u(l—N;))

+
p+ N p+ N (1 + Np)?
But

Ni(a+r)=r—ap
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Hence
Nyi(a+ 2 1—N*
af(N*P*) 1+N;‘(—“(a f)—N*(Ha*) o *“2))
ON p+ N p+ N (1 + Ny)
—rN* 1—-N*
B EL TS
pNg o (N
:1—N*< rN; _ru(l—N;))
PAu+ N (1 + Np)?
Let
rN, ru(l = Ny)
o, = —
YT+ NE o (p+ N2
So
af * * *
o (N B = 1= a,N;
Also
8f * * *
8P(N P}) = —aN;
ag * * *
a7 (N5, Pi) = aN;
09 e .
op(Ni Pl =1—aN;

This implies that the Jacobian matrix evaluated at (N}, Py) is

Ju(N: Pr) = (1 —a,N, —aN, )

aN; 1—aN:
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Now we back to a,, and substitute the value of IV, ; in it so

TN, ru(l = N;)

o, =
"Tp+ Ny (p+Ny)?
(T—au) a+r (a+au)(a+r>2
=T _T/"L
a+r Jru+r a—+r ru+r

r— ay ( a+r >
_= —Qa _—
vl M\Grn

The characteristic equation associated with J,(N};, Py) is

pu(X) = X —tr(Ju (N, PE))A + det(J, (N7, Pr))
Where

tr(Ju. (N, Pp)=1—a,N;+1—aN; =2~ (o, +a)N,;

And
det(JM(N:,P:)) =(1- aN;)(l — czuN:) + (aN:)2
=1-a,N,; —aN; + aoz“N;Q + (aN:)2
=1—(au+a)N; +ala,+a)N;?
Theorem 6.3.2. The positive fized point (N;, P;) = (ﬂ’ﬁ u&) of predator-

atr ’ a+r
prey system (6.5) is asymptotically stable if

2 ) g () <1

Proof. We use the Jury conditions to obtain the parametric region where

(%, %) is asymptotically stable.

First we observe that
pu(l) =1-— tT(J“(N;, P:)) + det(Ju(N;7 P:;))
=1-02—(a,+ a)N;) +1— (o + a)N: + aoy, + a)N;2
=a(a, + a)]\f;2

pu(1) > 0 holds if and only if (a, + a) > 0. To prove that o, +a > 0 we
assume o(p) = a, + a, where p € [0,£]. This leads to
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p(p) = oy +a
r—ap apla+r)

:a+
p+1 r(p+1)

ar(p+1) +r* —apr — ap(a +r)
r(pn+1)

r? +ar —a’p —arp

r(p+1)
Since
() = —r(p+1)(a® +ar) — (r* + ar — a*u — arp)r
720+ 12
—a*r —ar? —r® — ar?

r2(p+1)?

—(r? 4 2ar + a?)
r(p+1)?

B (r+a)?
n _r(u+1)2 <0

Hence op(p) is strictly decreasing on [0, L], thus ¢(p) attains its minimum
value at p =, but ¢(%) = 0. We conclude that a +a, > 0 for all u € [0, 7],
thus p,(1) > 0 if and only if a + o, > 0.
Now we investigate the other conditions

pu(—1) > 0if and only if:
* * *2
1+2—(a+au,)N,+1—(a+a,)N,; +ala+a,)N;”>0

which is equivalent to

4—2(a+a,)N; +ala+a,)N:? >0
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this lead to
ala+ o, )N;? > 2(a+ o, )N — 4

SO

4

aN! >2 — —————
! (a+ )N,

And by substituting the value of a + o, and N;; we have
pu(—1) > 0if and only if :

— 1
N AN r(p+1) r+a
r+a r2+ar —a’u —arp \r —ap

which is equialent to

a(r—a,u)>2_ dr(p+1)(r+a)

r+a (r(a+r)—ap(a+r))(r—aup)

SO

r+a (r —ap)?
To find necessary conditions for the inequality det(.J, (N, P;)) < 1. We note
that
det(J, (N, Py)) < 1 if and only if :
1 —(a+au)N,; +ala+ ozu)]\fl’;2 <1
hence

ala + au)sz < (a+au)N,

But since (a4 a,) > 0 on [0, Z] this implies that aN; <1,s0a (%) < 1.
Thus the fixed point (T_a“ T_‘“‘) is asymptotically stable if

a+r 7 a+r
4 1 —

o _Arlptl) _ (r—am)
(r —ap)? a+r
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6.4 Bifurcation analysis

Our objective now is to find the parameter space where the bifurcation of
the fixed points of the discrete predator-prey system with and without Allee
effect happens.

First we will discuss the bifurcation of the positive fixed point (N*, P*) =
(air’ aiT) of system (6.1). And by using the rules in Trace-determinate plane
(T'— D) and theorem 4.4.1, we will determine the parameter space where each
kind of bifurcation happens.

The Jacobian matrix at (N*, P*) is
1 _ T’2 —ar
J* = ( a+r a+r )
ar 1 — ar
a+tr a-+r

tr(J)=2—r

where

and

CLT2

det(J*)=1—r+
a+r

The saddle-node bifurcation occurs when the Jacobian matrix has an eigen-
value equal to 1. This is equivalent det(J*) = tr(J*) — 1 in (T'— D) - plane,
ie

Thus

a+r

This implies that a = 0 or r = 0, but this can not happen since a,r > 0.

Theorem 6.4.1. The fized point (N*, P*) = (==, =) of (6.1), undergoes

a+r’ a+r
period doubling bifurcation when 4 =2 — 2.
a+r T

Proof. Period-doubling bifurcation occurs when det(J*) = —tr(J*) — 1 so

2

1—r+ 2 = 941
a—+r
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which leads to

ar =2r—4
a—+r
hence
4
ar o 4
a—+r T

We saw that if 2= > 2—12 the fixed point (N*, P*) is stable, and if 2= < 2—2

then the fixed point (N*, P*) is unstable. When a and r passes the curve
o =2- % the fixed point (N*, P*) undergoes a period-doubling bifurcation
into two-periodic cycle. O]

Theorem 6.4.2. The fized point (N*, P*) undergoes Neimark-Sacker bifur-

cation if 2= =1, where 0 < r < 4.
a+r

Proof. When the Jacobian matrix J* has a pair of complex eigenvalues of
modulus 1, then system (6.1) undergoes Neimark-Sacker bifurcation at the
fixed point (N*, P*). This happens when det(J*) =1 and —2 < tr(J*) < 2,
which is equivalent to

2

det(J*) = 1_T+aa—l7:r =1
hence
aO—L:r =1
and
-2 <tr(J") <2
SO
—2<2-r<?2
which leads to
O<r<4

So when 2% =1 and 0 < r < 4, the fixed point (N*, P*) of system (6.1)
undergoes Neimark-Sacker bifurcation. O
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Now we will investigate the bifurcation scenario of the fixed points of discrete-
time predator prey system with Allee effect on prey population. We begin
with the fixed point (0,0). We found the Jacobian matrix of system (6.5) at

(0,0) which is
10
500 (5 )

Since the eigenvalues of J,(0,0) are Ay = 1 and A\ = 1, the fixed point is
non hyperbolic and undergoes saddle node bifurcation.
The Jacobian matrix at the fixed point (1,0) is

1-— uil —a
Ju(1,0) =
0 14+a
Where
,
1,0)=2+a— ——
t/r.(J,Uf( 70)) +a /1/+ 1
And
T r ar
det(J,(1,0) = (1 - l+a)=1+a— -
t(n1,0) = (1- L) (ra = 1ra- -2

Theorem 6.4.3. The fized point (1,0) of system (6.5) undergoes period dou-

bling bifurcation when uil = 2.

Proof. The period-doubling bifurcation occurs when the Jacobian matrix
J,(1,0) has an eigenvalue equal to —1. In 7" — D plane this occurs when
det(J,(1,0)) = —tr(J,(1,0)) — 1, this lead to

ar

+
p+1  p+1

and since a 4+ 2 > 0, so we have u_’"H = 2. O

We will study the bifurcation of the fixed point (N}, P;) = (T;ff ) T(;:”f) The
Jacobian matrix at (N, Py) is

1 —ozuN; —aN;
J; =
aN;k 1—aNl1k
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Where
r—ap  apla+r)
Q, = —
p+1  r(p+1)
And
tr(J,) =2—(a+a,)N,;
Also

det(J) =1 — (a+ o) Ny + a(a+ o, )N;?

Theorem 6.4.4. The fized point (N;, P/j) undergoes saddle node bifurcation
when pi =~

Proof. Saddle-node bifurcation occurs when det(J;) = tr(J;;) — 1 this leads
to

1—(a+au)N; +ala+ aH)N:f =1-(a+au)N;
hence
ala+ o, )N;? =0
But since a(a + a,) > 0, this leads to

r—ap

N = =0
Ba+r
S0
-
H=-
a
Observe when p1 =  the fixed point (N}, P;) equals (0,0). O

Theorem 6.4.5. The fired point(N};, P;), undergoes a period-doubling bifur-
cation into two cycle when

(o) T

Proof. The fixed point(N;, P;), undergoes a period-doubling bifurcation when

det(J;) = —tr(J;) — 1
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SO

1— (o +a)Ny +a(ay, +a)N3? = =2+ (o + a)N; — 1
which leads to
ala, +a)N;? = 2(a, +a)N; — 4

hence

4

(o, + a)N;:

aN* =2 —

by substituting the value of (a, + a) and N, we get

(L) <o bl

r+a ) (r —ap)?

O

Theorem 6.4.6. The fized point (N, P}), undergoes Neimark-Sacker bifur-
cation when

a (=) =1and 0 < L < g

Proof. Here we assume that N* # 0, we know that Neimark-Sacker bifur-
cation happens in (7' — D)-plane when det(J}) = 1 and =2 < tr(J}) < 2,
which is equivalent to

1 — (o +a)N; +alay, + a)N:Q =1

SO

(p +a)Nj(aN*—1) =0

(T—au)
a =1
a+r

—2<tr(J;) <2

since (o, +a)N; > 0 so

and
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SO
—2<2—(a,+a)N; <2
hence
0 < (au+a)N; <4
which is equivalent to

. 2
0< r—aw® _,
r(p+1)

6.5 Numerical examples

In this section we will use a numerical examples which support our disscution
in the previous sections to illustrate the bifurcation diagram of the predator
prey model, we use Matlab 7.12.

Example 6.5.1. In this example we draw the bifurcation diagram of predator-
prey model without Allee effect.

In system (6.1) we fix the the parameter a and we consider r as bifurcation
parameter. We take a = 2 and 0 < r < 3, then the positive fixed point
(N*, P*) of system (6.1) is N*=P"=5

The region of stability of (N*, P*) is 2 — ‘;1 < % < 1. Depending on theo-
rem 6.4.2 the fixed point (N*, P*) = (ﬁ, QLJH,) undergoes a Neimark-Sacker
bifurcation when

2r
2471
which leads to the fact that the fixed point (2L+r’ QL-H) undergoes a Nimark-

Sacker bifurcation when r = 2, (see figure 6.1 ).

Example 6.5.2. Here we will illustrate the bifurcation diagram of predator-
prey model with Allee effect, (model (6.5) ). As the previous example we
fixed a = 2, p = .09 and let r varies. Hence the positive fixed point of system

(6.5) becomes (N, P;) = (%, %)

By theorem 6.4.4 and theorem 6.4.6 model (6.5) undergoes a saddle-node
bifurcation when r = (.18, also it undergoes a Neimark-sacker bifurcation
when r = 2.36 (see figure 6.2 and figure6.3 )
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Figure 6.1: The bifurcation diagram of predator-prey ( model (6.1)).
The initial conditions Ny = 0.3, Py = 0.2, and a = 2 and r varies from 0 to 3.
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Figure 6.2: The bifurcation diagram (1) of predator-prey with Allee effect (
model (6.5)).
The initial conditions Ny = 0.3, Py = 0.2, and a = 2,u = 0.09 and r varies from
1.94 to 2.6.
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Figure 6.3: The bifurcation diagram (1) of predator-prey with Allee effect (

model (6.5)).

The initial conditions Ny = 0.3, Py = 0.2, and a = 2,u = 0.09 and r varies from 0
to 2.6.



Chapter 7

Bifurcation analysis a
population model

7.1 Introduction

Consider the following model

(7.1) Tpr1 = flx,) =

where z,, € [0,1], and ¢ € (0, 1).

This model is a generalization of the logistic model, here we will investigate
stability and bifurcation of this model. We will find also its fixed points and
2-periodic orbit, determine their stability region, and study their bifurcation,
saddle-node and period-doubling bifurcation. The model (7.1) has two fixed
points, &1 = 0, and Ty = “=X. To insure that 7, € [0,1], we assume that

a+c
a>1.

ax, (1 —x,)
1+ cz,

7.2 Stability analysis

Now we give the sufficient conditions for the stability of these fixed points.

Theorem 7.2.1. For the model (7.1), the fized point T, = 0 is stable if
0 < a <1 and unstable for a > 1.

Proof. We find the first derivative of f(z) and we have
a
2 "Ng)= —— 1 —22 —cx?
(7.2) f(x) (1+ca:)2[ x cx]

33
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Notice that when a > 1 the fixed point #; = 0 is unstable since f'(0) = a,
for @ = 1, we have f'(0) = 1 hence Z; is non-hyperbolic fixed point which
requires to find the second derivative of f(z), and we find that

—2c

2
(1+cx)3 [

(7.3) f(z)=a A+ )

1—2x — caﬂ —
Also we observe that f”(0) = —2a(c+1) # 0 since ¢ € (0,1), hence the fixed
point Z; is unstable for all a > 1. O

a—1

Theorem 7.2.2. The fized point Ty = <— 1is asymptotically stable if 1 <

+
(c+3)++/ (c+3)2+4c
2

a <

a—

Proof. The fixed point Zo = —[1: is asymptotically stable if and only if

(7.4)
bra N a _ a—1 . a—1\"
AR —[1“(2_3”2(1 2 (4) (+)>
_ a(a + c)? [(a +¢)* = 2(a—1)(a+c) —c(a—1)?
(a+c)2+2c(a—1)(a+c)+ 2(a—1)2 (a+ c)?

<1

_ ‘a (a+c)* —2(a—1)(a+c)—cla—1)2
(a+4c)2+2c(a—1)(a+c)+ c2(a—1)2

hence we have the following two inequalities

(a+0)?—2a—1(a+c)—cla—1)°

(7.5) —1< a(a—l—c)2+20(a— (a+c) +c*(a—1)

<1

The relation

a(a+c)? —2a(a —1)(a+c) — ac(a — 1)?

(7.6) (a+c)2+2c(a—1)(a+c)+ c2(a—1)2

—1<0

which leads to

(7.7)
ala+c)? —2a(a—1)(a+c) —acla—1)* = [(a+c)* +2c(a — 1)(a+c) + *(a — 1)?]

(a+c)2+2c(a—1)(a+c)+c*(a—1)2 <0
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And under our assumptions that ¢ > 1 and ¢ € (0,1) the denominator is
always positive, we have

(7.8)
a(a+c)* —2a(a—1)(a+c) —acla—1)* = [(a+¢)* +2c(a—1)(a+¢) + Fla—1)*] <0

which is equivalent to
(a—1)(a+c)?—2(a—1)a+c)*—cla—1)*(a+c) <0
hence
—(a=1)(a+0¢)* —cla=1)*(a+c) <0
which leads to
—(a+c¢)—cla—1)<0
The last inequality is true for a > 1. The second inequality is

a(a+ c)* —2a(a —1)(a+c) —aca —1)?

(7.9) (a+¢)?2+2c(a—1)(a+c)+ c2(a—1)2

+1>0

So we have the following inequality
(7.10)

ala+c)? —2a(a—1)(a+c) —acla—1)*+ (a+ ¢)? + 2c¢(a — 1)(a + ¢) + *(a — 1)?
(a+c¢)?+2c(a—1)(a+c)+A(a—1)2

>0

This leads to
(a+D(a+c)*+(a—1(c—a)2a+c)+cla—1)) >0
S0
(a+1)(a+c)*>(a—1)(a—c)(a2+c)+c)
which is equivelant to
(a+1)(a* + 2ac+ ¢*) > (a®> — ac — a + ¢)(2a + ac + ¢)
hence

—a® + 4a’c+ ac® + 3a® + ac+ a*? — aPc > 0
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SO
—a® +4ac+ 4+ 3a+c+act —a*c >0
consequently
a(—a+4c+3+c —ac)+clc+1)>0
therefore
a(—a(l+c)+c(l4+¢)+3(1+¢)+c(c+1)>0
thus

a(l+c)(—a+c+3)+c(l+¢) >0
hence we need to solve the quadratic inequality
(7.11) a*—(c+3)a—c<0
Now the solution of inequality (7.11) is given by

(c+3) — §c+3)2+40<a< (c+3) + 2(0—1—3)2—1—40

(7.12)

This implies that the fixed point Z, is asymptotically stable if

(c+3)+/(c+3)2+4c
2

(7.13) l<a<

7.3 Bifurcation analysis

Now we will investigate the bifurcation of the fixed points of model (7.1).

Theorem 7.3.1. The model (7.1) undergoes a transcritical bifurcation when
a=1.

Proof. We observe that when a = 1, the system has only one non-hyperbolic
fixed point & = 0, so at the point (Z,a) = (0,1) the system undergoes a
transcritical bifurcation, since it satisfies the following conditions
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1. 8 (x,a) = H=3 then 3£(0,1) =0

2. (g, ) = LrenU2o) e s®) fhon L0 1) =140

dz0a (1+cz)
3 Fh(e0) = [l — 20— e0?] — s then TH0,1) = —2c =240,

At a = 1 the stable fixed point #; = 0 meet with another fixed point 7, = £ +i.

Beyond a = 1 the first branch x = 0 becomes unstable and the other branch
r = %L is asymptotically stable. In other words, exchange of stability occurs

+
at a = 1. O

2
the fixed point Z,, undergoes a period-doubling bifurcation into 2-period

cycle. To find the two cycle, we find f2, and solve the equation f2(x) = x.

In the other case, when a = (cts)y (C+3)2+4C, fl(zy) = f’(a+c) = —1, hence

Now
2/ 8 _ |az(l—=) (az(l-—=x) 2 1
Py =JUt) =15 ( L+ ) L+
(7.14)
_ a’z(1—x)[(1+cx) — ax(l — z)]
(1+cx) [(1+ cx) + acx(l — x)]
And

a*r(1 —2) [(1 + cx) — ax(l — )]

(14 cx) [(1+ cx) + acx(1l — )]
x4 cx)[(1+cx) +ace(l — )
(14 cx) [(1+ cx) + acx(l — x)]

(7.15) fAr)—z=

=0

(7.16)

This is true if and only if

(7.17)
a’r(1— ) [(1+cx) —ar(l — )] —z(1 + cx) [(1 + cx) + acr(l — )] =0
But since f2( )—x=0hasZ; =0and Ty = Tl as roots. We need to factor

out Z; and Z, to do this we divide the left hand side of equation (7.17) by

x? — (a+c) x, to obtain

(7.18) Q(z) = (a® — *a)r®* + (¢ — a®)(1 + a)x + (1 + a)(c + a)
Hence to find the two cycle we need to solve the quadratic equation

(7.19) (a® = ?a)z* + (¢ — a®)(1+ a)x + (1 +a)(c+a) =0
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And since a 4 ¢ > 0, equation (7.19) is equivalent to
(7.20) ala—c)x* —(a—c)(1+a)z+ (1+a) =0

We find the two-cycle {Z1, 25} where a # ¢, this is true since @ > 1 and
€(0,1)

@90t + a0 P dala—(at ]
b 2a(a — ¢)

b — (a—c)(1+a)—+/(a—c)2(1+a)? —dala —c)(a+1)
? 2a(a — c)

To check the stability of this cycle, we use the fact that the 2-period cycle
is asymptotically stable if and only if |-£ f2(2)| < 1.By using chain rule, we
can show that i]ﬁ( ) = (@) f(f(@ )) "Hence to check the stability of the
two cycle we apply the following condition

(7.21) |f' (@) f'(22)] < 1

Now substitute #; and 5 in f'(x). So we have the following two inequalities

CL2

(722) —1< (DL ETAE [(1 =28 — c2])(1 — 225 — ci3)] < 1

The relation

CL2

(14 c21)%(1 + c22)? [

(7.23) -1< (1 =28 — c#])(1 — 285 — c23)]

leads to the following inequality
a?(1 =22, — ci})(1 — 285 — c23) + (1 + c21)*(1 + cip)? > 0

consequently
a?(1 — &g — ci2 — 281 + 48129 + 2¢i1 22 — cg&% + 2c:fc$a:~2 + c%%g;g)

+(1 + 2¢ig + 35 + 2y + 4?3139 + 2638125 + 223 + 23310 + *2373) > 0
thus

(a +1)
+ (2¢ — 2a®)y + (¢* — ac)d5 + (2¢ — 2a°) 3 + (4a® + 462)i13&2
(2¢* + 2ca®) 123 4 (2 — ca®)2? + (2ca® + 2¢%) @25y + (Pa® + ¢")2243 > 0
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this is equivalent to

(7.24)

(a® 4+ 1) + (2¢ — 2a%) (21 + 22) + (2 — a*c)(2? + 23) + (2a%c + 2¢%) @1 29(21 + 3)
+ (a® + ) 2122(4 + *R189) > 0

Substitute the value of 1 and 25, and to make our calculation easier observe
that

R R 1+a
1+ T =
a
. . a—c)(1+a)?—2ala+1
s @O0+ = 2afa s 1)
a’(a —c)
. a+1
T1T9 =
R P

And we have the following inequality

(a? +1) + (2 — 2?) (1 +“) (¢ — ) <(‘“ A +a)” ~ 2a(at 1))

a a’(a —c)

+(2a%c + 2¢*) (%) + (a® 4 ) (%) (4 +¢ (a?atlc») >0

Which is equivelant to

(@ +1)+ (a Z 1) [20 — 942 — Z(C(Za—_aj)c) n 4(?; j Zj)}
(I+a) [ o 20 ca®+ & Aa*+A)

e R e R o I
Thus
(a*+ 1)+ % [a(2¢ — 2a%)(a — ¢)* — 2a(a — ¢)(¢® — a®c) + 4a(a® + ¢*)(a — c)]
+ —ag(Za+—1)c)2 (> —a’c)(a—c)® + (2ca® +2¢%)(a — ¢) + *(a* + ¢*)] >0
Hence
(7.25)

(=1 —¢c)a® + (2 +4c +2¢))a® + (= + & + Tc + 5)a* + (—2¢ — 4¢® — 2¢%)a?
+ (= = c*)a* > 0
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Now factor out (14c¢) from inequality (7.25) to obtain the following inequality
(7.26) —a* +2(c+1)a* + (=2 +2c+5)a® — 2c(c+ 1)a—c* >0

However the relation

CL2

(1 + C.CCAl)2(1 + Cf2)2

(7.27) [(1 =28 — ey®)(1 — 225 — )] < 1

leads to the inequality

(7.28)
(a® — 1) — (2a* + 2¢) (&1 + 2o) — (ca® + ) (2] + 23) + (2a*c — 2¢*) 219 (21 + £2)
+(a? = ) (4 + Pa1dy)d139 < 0

Substitute the value of Z; and Z,, and we have the following inequality

(a? — 1) — (2a* + 2¢) (1 Z a) — (ca® + ¢?) <<a —adl J;f();__cz)a ulths a))

e () o () () <

Thus

(a® —1)+ % (a(a — ¢)(—2a® — 2¢) + a(2ca® + 2¢°) + 4a(a® — *))
ij(:—_a)c) ((—ca® = ?)(a —¢) +2a°c — 2% + (a+¢)) <0

So we have

(7.29) (=1 —c)a’ + (2 + 3c+2)a* + (2¢* + 5¢ + 3)a® + (¢ + ¢)a® < 0
Which is equivalent to

(7.30) —a*+ (c+2)a* + (2c+3)a+c <0

Hence when the model (7.1) satisfies (7.26) and (7.30) the 2-period cycle is
asymptotically stable. Moreover when a and c passe the curve

(7.31) —a*+ (c+2)a*+ (2c+3)a+c=0

then the 2-period cycle undergoes a saddle- node bifurcation. And when a
and c passe the curve

(7.32) —a* +2(c+1)a® + (= + 2c+ 5)a* + —2c(c + 1)a — c*a =0

the system undergoes a period-doubling bifurcation .
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7.4 Numerical examples

In this section we will take some fixed values of the parameter ¢ in model
(7.1), to view four previous result.

Example 7.4.1. Now in model (7.1), we will take ¢ = 0, and substitute it in
all previous results. The fixed points will be ; = 0 and 75 = ‘%1 For 2, = 0,
observe that f’(0) = a, hence we conclude that Z; = 0 is asymptotically
stable if 0 < a < 1, when a = 1 the fixed point is non-hyperbolic, and also
17(0) = =2, so the fixed point Z; = 0 is unstable. The fixed point Z5 = %1
where a > 1, as in the results which we proved, it is asymptotically stable
when 1 < a < 3.

Note that an exchange of stability occurs at a = 1 between z; = 0 and

Ty = aT’l Hence at the point (0,1) the system undergoes a transcritical
bifurcation.
Moreover when a = 3, we have f'(Z5) = f'(%1) = —1, therefore Z, = =1 is

non-hyperbolic fixed point. To check stability of Z, we need to compute the
Schwarzian derivative. We observe that

Sf (i) = Sf (g) S— (g) - ; [f” (;)r ——54<0

Hence the fixed point 7, = % is asymptotically stable. Now at the point
(Z9,a) = (%, 3) the system undergoes a period-doubling bifurcation, and we
have

(7.33) fA(z) = d’z(1 —2)[1 — ax(1 — 2)]

We find that the 2-periodic cycles are

P (1+a)+v/(A+a2—4a+1) (1+a)+/(a-3)(a+1)

2a 2a
(7.34)

by — (1+a)— /(1 +a)?—4(a+1) _(0+a)—V(a=3)(a+1)
2a 2a

Clearly the 2-period cycle {Z1, o} exists only if @ > 3. To know whether this
2-period cycle is asymptotically stable we substitute ¢ = 0 in the inequalities
(7.26) and (7.30), so we have

(7.35) —a?>+2a+5>0
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and

(7.36) —a®>+2a+3<0
Solving inequality (7.35) leads to

(7.37) 1-V6<a<1+V6

and also the solution of inequality (7.36) leads to
(7.38) a>3 or a<-—1

Hence the last solutions of the two inequalities yields the cycle {Z1, &5} is
asymptotically stable if

(7.39) 3<a<1+V6

Remark 7.4.2. We can see that if we take ¢ = 0 in the results related to
model (7.1), we have the known results about logistic model, hence model
(7.1) is a generalization of the logistic model (see figure 7.1).
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Figure 7.1: The bifurcation diagram of model (7.1), when ¢ = 0.
The bifurcation diagram of model (7.1) when ¢ = 0 is the same as the bifurcation
diagram of logistic map
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Example 7.4.3. If we take ¢ = 0.3 then, model (7.1) has two fixed points
Ty =0 and Ty = ai_()%?) . Depending on our results we have the fixed point
71 = 0 is asymptotically stable when 0 < a < 1. An exchange of stability
between two fixed points happens when a = 1, this causes a transcritical
bifurcation. By theorem 7.2.2 and by using some numerical calculation we
note that the fixed point aT(f:s is asymptotically stable when 1 < a < 3.3885.
When a = 3.3885 the model (7.1) undergoes a period doubling bifurcation

(see figure 7.2).

Figure 7.2: The bifurcation diagram of model (7.1), when ¢ = 0.3.



Appendix A

The Matlab 7.12 codes

A.1 The cobweb diagram of logistic map

alpha=input(’alpha=")
x0=input(’x0=")

N=20; x(1) = x0;

for ic=1:N

x(ic+1) = alpha*x(ic)*(1-x(ic));
end

plot the map function and the line y=x
clf;
t = 0:0.01:1;

plot(t,alpha*(t.*(1-t))); hold on;
xlabel(’x’);
ylabel(’f(x)’);

axis('square’); axis([0 1 0 1]);
set(gea,’XTick’,(0:0.1:1),"YTick’,(0:0.1:1))

grid on;
fplot(*1*y’,[0 1],’r");

STEP 3: PLOT COBWEB
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line([x(1) x(1),[0 x(2)],Color’,’g’);

plot(x(1), x(1),ko’);pause

for ic=1:N-1

line([x(ic) x(ic+1)],[x(ic+1) x(ic+1)],’Color’,’g’);pause
plot(x(ic+1), x(ic+1),’ko’);pause

lin(eiz([ x(ic+1) x(ic+1)],[x(ic+1) x(ic+2)],’Color’,’g’);pause
line([x(N) x(N+1)],[x(N+1) x(N+1)],’Color’,’g’)
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A.2 The bifurcation diagram of logistic map

close all

clear all
avalues=0:0.0001: 4;
N=100; a=avalues; x=0.1;
X=zeros(N,length(a));

for n=1:.3*N
x=a.*x.*(1-x);

X(n,:)=x;

End

figure (9), hold on

for n=.3*N:N

x=a. x.*(1-x);

X(n,:)=x;
plot(a,x,”.”,"MarkerSize’,0.01)
xlabel('u’);

ylabel(’f(x)’);

axis ([0 40 1))
end
hold off
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A.3 The bifurcation diagram of predator-prey
model

cle; clear all;

n = input('number of iterations = ’);
a=2;

r=0:0.001:3;
N(:,1)=zeros(size(r,2
P(:,1)=zeros(size(r,2
N(:,1)=0.3;
P(:,1)=0.2

for k=1 : size(r,2)
for i=1:130
N(k,i+1)=N(k,i)+r(k)*N(k,i)*(1-N
P (k,i+1)=P(k,i)+a*P (ki) *(N(k,i)-
end

end

s=r(1,1)*ones(1,51);
m=P(1,80:130);

for k=2 : size(r,2)
s=[s,r(1,k)*ones(1,51)];
m=[m,P(k,80:130)];

end

plot(s,m,”.k’);

xlabel('r(growth rate)’);
ylabel(’predator densities’);

~—
[y

(k,i))-a*N(k,i)*P(k,i);
P(k,i));

grid;
Zoom;

A.4 The bifurcation diagram of model (7.1)

close all

clear all

avalues=0:0.001: 5;
c=0.3;

N=100; a=avalues; x=0.1;
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X=zeros(N,length(a));

for n=1:.3*N
x=a.*x.*(1-x)./(1+c.*x);
X(n,:)=x;

end

figure (9), hold on

for n=.3*N:N

x=a. x.*(1-x)./(14c.*x);
x(n,:)=x;
plot(a,x,”.”,"MarkerSize’,0.01)
axis ([0 5 0 1])
xlabel(’a’),ylabel("x(n)’),grid on

end

hold off
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